Skip to main content

Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review)

Abstract

The carbene transfer from N-heterocyclic carbene complexes of Group 11 metals (NHC–MC) (especially silver and copper) to other metals is considered a convenient and universal, sometimes having no alternative, method for the synthesis of a wide range of important N-heterocyclic carbene complexes of transition metals. As the number of successful examples of transmetalation with the formation of the target product has increased, the data were accumulated on alternative or unexpected results of the interaction of NHC–MC complexes with compounds of other metals. This review considers the examples of NHC–MC reactions with compounds of other metals which proceed with a change in the metals oxidation state, conversion of (NHC)MCX into cationic homoleptic [(NHC)2MC]+ forms, transmetalation retaining the other metal in the coordination sphere of the product, or formation of heterometallic adducts preserving the MC–Ccarbene bond, rather than these occurring according to the standard reaction pathway. Unusual “reverse” carbene transfer reactions have been considered separately. The review material reveals a promising new synthetic potential of NHC–MC in the reactions with other metals and discusses the possible mechanisms and driving forces of such transformations. The most important aspects of the application of the obtained products, primarily in various catalytic processes, have been considered as well.

This is a preview of subscription content, access via your institution.

Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Notes

  1. Hereafter: NHC–MС.

REFERENCES

  1. Lee, J.-Y., Lee, J.-Y., Chang, Y., Hu, C., Wang, N.M., and Lee, H.M., Organometallics, 2015, vol. 34, no. 17, p. 4359. https://doi.org/10.1021/acs.organomet.5b00586

    CAS  Article  Google Scholar 

  2. Patil, S.A., Patil, S.A., Patil, R., Keri, R.S., Budagumpi, S., Balakrishna, G.R., and Tacke, M., Future Med. Chem. Future Sci., 2015, vol. 7, no. 10, p. 1305. https://doi.org/10.4155/fmc.15.61

    CAS  Article  Google Scholar 

  3. Aher, S.B., Muskawar, P.N., Thenmozhi, K., Bhagat, P.R., Babaji, S., Narayan, P., Thenmozhi, K., Rambhau, P., Aher, S.B., Muskawar, P.N., Thenmozhi, K., and Bhagat, P.R., Eur. J. Med. Chem., 2014, vol. 81, p. 408. https://doi.org/10.1016/j.ejmech.2014.05.036

    CAS  Article  PubMed  Google Scholar 

  4. Muhammad, N. and Guo, Z., Curr. Opin. Chem. Biol., 2014, vol. 19, p. 144. https://doi.org/10.1016/j.cbpa.2014.02.003

    CAS  Article  PubMed  Google Scholar 

  5. Oehninger, L., Rubbiani, R., and Ott, I., Dalton Trans., 2013, vol. 42, no. 10, p. 3269. https://doi.org/10.1039/C2DT32617E

    CAS  Article  PubMed  Google Scholar 

  6. Liu, W. and Gust, R., Chem. Soc. Rev., 2013, vol. 42, no. 2, p. 755. https://doi.org/10.1039/C2CS35314H

    CAS  Article  PubMed  Google Scholar 

  7. Kapdi, A.R. and Fairlamb, I.J.S.S., Chem. Soc. Rev., 2014, vol. 43, no. 13, p. 4751. https://doi.org/10.1039/c4cs00063c

    CAS  Article  PubMed  Google Scholar 

  8. Ray, S., Mohan, R., Singh, J.K., Samantaray, M.K., Shaikh, M.M., Panda, D., and Ghosh, P., J. Am. Chem. Soc. Am. Chem. Soc., 2007, vol. 129, no. 48, p. 15042. https://doi.org/10.1021/ja075889z

    CAS  Article  Google Scholar 

  9. Mikherdov, A.S., Baikov, S.V., Proskurina, I.K., Shetnev, A.A., and Kotov, A.D., Russ. J. Gen. Chem., 2019, vol. 89, no. 10, p. 2062. https://doi.org/10.1134/S1070363219100128

    CAS  Article  Google Scholar 

  10. Serebryanskaya, T.V., Kinzhalov, M.A., Bakulev, V., Alekseev, G., Andreeva, A., Gushchin, P.V., Protas, A.V., Smirnov, A.S., Panikorovskii, T.L., Lippmann, P., Ott, I., Verbilo, C.M., Zuraev, A.V., Bunev, A.S., Boyarskiy, V.P., and Kasyanenko, N.A., New J. Chem., 2020, vol. 44, no. 15, p. 5762. https://doi.org/10.1039/D0NJ00060D

    CAS  Article  Google Scholar 

  11. Valente, C., Çalimsiz, S., Hoi, K.H., Mallik, D., Sayah, M., and Organ, M.G., Angew. Chem. Int. Ed., 2012, vol. 51, no. 14, p. 3314. https://doi.org/10.1002/anie.201106131

    CAS  Article  Google Scholar 

  12. Hoyos, M., Guest, D., Navarro O., in N-Heterocyclic Carbenes, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014, vol. 4, p. 85. https://doi.org/10.1002/9783527671229.ch04

  13. Khazipov, O.V., Shepelenko, K.E., Pasyukov, D.V., Chesnokov, V.V., Soliev, S.B., Chernyshev, V.M., and Ananikov, V.P., Org. Chem. Front., 2021, vol. 8, no. 11, p. 2515. https://doi.org/10.1039/d1qo00309g

    CAS  Article  Google Scholar 

  14. Shepelenko, K.E., Soliev, S.B., Galushko, A.S., Chernyshev, V.M., and Ananikov, V.P., Inorg. Chem. Front., 2021, vol. 8, no. 6, p. 1511. https://doi.org/10.1039/d0qi01411g

    CAS  Article  Google Scholar 

  15. Levin, E., Ivry, E., Diesendruck, C.E., and Lemcoff, N.G., Chem. Rev., 2015, vol. 115, no. 11, p. 4607. https://doi.org/10.1021/cr400640e

    CAS  Article  PubMed  Google Scholar 

  16. Yuan, D., Zhang, Q., Liao, S., Xiong, W., Yuan, L., Cai, Q., Yang, M., Li, X., Jiang, Y., Liu, Y., Li, P., Xu, Z., Sun, P., and Geng, H., Chinese J. Org. Chem., 2015, vol. 35, no. 5, p. 961. https://doi.org/10.6023/cjoc201407022

    CAS  Article  Google Scholar 

  17. Mora, M., Jiménez-Sanchidrián, C., and Rafael Ruiz, J., Curr. Org. Chem., 2012, vol. 16, no. 9, p. 1128. https://doi.org/10.2174/138527212800564358

    CAS  Article  Google Scholar 

  18. Fortman, G.C. and Nolan, S.P., Chem. Soc. Rev., 2011, vol. 40, no. 10, p. 5151. https://doi.org/10.1039/c1cs15088j

    CAS  Article  PubMed  Google Scholar 

  19. Kantchev, E.A.B., O’Brien, C.J., and Organ, M.G., Angew. Chem. Int. Ed., 2007, vol. 46, no. 16, p. 2768. https://doi.org/10.1002/anie.200601663

    CAS  Article  Google Scholar 

  20. Beletskaya, I.P., Nájera, C., and Yus, M., Russ. Chem. Rev., 2020, vol. 89, no. 2, p. 250. https://doi.org/10.1070/RCR4916

    CAS  Article  Google Scholar 

  21. Masoud, S.M., Vorobyeva, D.V., Petropavlovskikh, D.A., Bruneau, C., and Osipov, S.N., Russ. Chem. Rev., 2021, vol. 90, no. 4, p. 419. https://doi.org/10.1070/RCR4984

    Article  Google Scholar 

  22. Sahharova, L.T., Gordeev, E.G., Eremin, D.B., and Ananikov, V.P., ACS Catal., 2020, vol. 10, no. 17, p. 9872. https://doi.org/10.1021/acscatal.0c02053

    CAS  Article  Google Scholar 

  23. Mercs, L. and Albrecht, M., Chem. Soc. Rev., 2010, vol. 39, no. 6, p. 1903. https://doi.org/10.1039/b902238b

    CAS  Article  PubMed  Google Scholar 

  24. Visbal, R. and Gimeno, M.C., Chem. Soc. Rev., 2014, vol. 43, no. 10, p. 3551. https://doi.org/10.1039/c3cs60466g

    CAS  Article  PubMed  Google Scholar 

  25. Smith, C.A., Narouz, M.R., Lummis, P.A., Singh, I., Nazemi, A., Li, C.H., and Crudden, C.M., Chem. Rev., 2019, vol. 119, no. 8, p. 4986. https://doi.org/10.1021/acs.chemrev.8b00514

    CAS  Article  PubMed  Google Scholar 

  26. Peris, E., N-Heterocyclic Carbenes Transit. Met. Catal., 2007, p. 83. https://doi.org/10.1007/3418_027

  27. Martynova, E.A., Tzouras, N.V., Pisanò, G., Cazin, C.S.J., and Nolan, S.P., Chem. Commun., 2021, vol. 57, no. 32, p. 3836. https://doi.org/10.1039/d0cc08149c

    CAS  Article  Google Scholar 

  28. Wang, H.M.J. and Lin, I.J.B., Organometallics, 1998, vol. 17, no. 5, p. 972. https://doi.org/10.1021/om9709704

    CAS  Article  Google Scholar 

  29. Furst, M.R.L. and Cazin, C.S.J., Chem. Commun., 2010, vol. 46, no. 37, p. 6924. https://doi.org/10.1039/c0cc02308f

    CAS  Article  Google Scholar 

  30. Lin, J.C.Y., Huang, R.T.W., Lee, C.S., Bhattacharyya, A., Hwang, W.S., and Lin, I.J.B., Chem. Rev., 2009, vol. 109, no. 8, p. 3561. https://doi.org/10.1021/cr8005153

    CAS  Article  PubMed  Google Scholar 

  31. Cabeza, J.A. and García-Álvarez, P., Chem. Soc. Rev., 2011, vol. 40, no. 11, p. 5389. https://doi.org/10.1039/c1cs15108h

    CAS  Article  PubMed  Google Scholar 

  32. Lin, I.J.B. and Vasam, C.S., Can. J. Chem., 2005, vol. 83, no. 6–7, p. 812. https://doi.org/10.1139/v05-087

    CAS  Article  Google Scholar 

  33. Jazzar, R., Soleilhavoup, M., and Bertrand, G., Chem. Rev., 2020, vol. 120, no. 9, p. 4141. https://doi.org/10.1021/acs.chemrev.0c00043

    CAS  Article  PubMed  Google Scholar 

  34. Danopoulos, A.A., Simler, T., and Braunstein, P., Chem. Rev., 2019, vol. 119, no. 6. https://doi.org/10.1021/acs.chemrev.8b00505

  35. Nahra, F., Gómez-Herrera, A., and Cazin, C.S.J., Dalton Trans., 2017, vol. 46, no. 3, p. 628. https://doi.org/10.1039/C6DT03687B

    CAS  Article  PubMed  Google Scholar 

  36. Bidal, Y.D., Santoro, O., Melaimi, M., Cordes, D.B., Slawin, A.M.Z., Bertrand, G., and Cazin, C.S.J., Chem. Eur. J., 2016, vol. 22, no. 27, p. 9404. https://doi.org/10.1002/chem.201601254

    CAS  Article  PubMed  Google Scholar 

  37. Zhang, D. and Zi, G., Chem. Soc. Rev., 2015, vol. 44, no. 7, p. 1898. https://doi.org/10.1039/c4cs00441h

    CAS  Article  PubMed  Google Scholar 

  38. Lazreg, F. and Cazin, C.S.J., in N-Heterocyclic Carbenes, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014, p. 199. https://doi.org/10.1002/9783527671229.ch08

  39. Garrison, J.C. and Youngs, W.J., Chem. Rev., 2005, vol. 105, no. 11, p. 3978. https://doi.org/10.1021/cr050004s

    CAS  Article  PubMed  Google Scholar 

  40. Lin, I.J.B. and Vasam, C.S., Coord. Chem. Rev., 2007, vol. 251, nos. 5–6, p. 642. https://doi.org/10.1016/j.ccr.2006.09.004

    CAS  Article  Google Scholar 

  41. Liu, B., Liu, X., Chen, C., Chen, C., and Chen, W., Organometallics, 2012, vol. 31, no. 1, p. 282. https://doi.org/10.1021/om200881s

    CAS  Article  Google Scholar 

  42. Baker, M.V., Brown, D.H., Haque, R.A., Simpson, P.V., Skelton, B.W., White, A.H., and Williams, C.C., Organometallics, 2009, vol. 28, no. 13, p. 3793. https://doi.org/10.1021/om8011745

    CAS  Article  Google Scholar 

  43. Yu, M.-H., Yang, H.-H., Gu, Y.-C., Wang, B.-H., Liu, F.-C., Lin, I.J.B., and Lee, G.-H., J. Organomet. Chem., 2019. https://doi.org/10.1016/j.jorganchem.2019.02.015

  44. Fischer, E.O. and Bock, M., J. Organomet. Chem., 1985, vol. 287, no. 2, p. 279. https://doi.org/10.1016/0022-328X(85)87265-X

    CAS  Article  Google Scholar 

  45. Fehlhammer, W.P., Achatz, D., Plaia, U., and Völkl, A., Z. Naturforsch. (B), 1987, vol. 42, no. 6, p. 720. https://doi.org/10.1515/znb-1987-0614

    CAS  Article  Google Scholar 

  46. Barluenga, J., Vicente, R., López, L.A., and Tomás, M., J. Organomet. Chem., 2006, vol. 691, no. 26, p. 5642. https://doi.org/10.1016/j.jorganchem.2006.09.013

    CAS  Article  Google Scholar 

  47. Öfele, K. and Herberhold, M., Angew. Chem. Int. Ed., 1970, vol. 9, no. 9, p. 739. https://doi.org/10.1002/anie.197007391

    Article  Google Scholar 

  48. Fañanás-Mastral, M. and Aznar, F., Organometallics, 2009, vol. 28, no. 3, p. 666. https://doi.org/10.1021/om801146z

    CAS  Article  Google Scholar 

  49. Kessler, F., Szesni, N., Maaß, C., Hohberger, C., Weibert, B., and Fischer, H., J. Organomet. Chem., 2007, vol. 692, no. 14, p. 3005. https://doi.org/10.1016/j.jorganchem.2007.03.022

    CAS  Article  Google Scholar 

  50. Casey, C.P. and Anderson, R.L., J. Chem. Soc. Chem. Commun., 1975, no. 21, p. 895. https://doi.org/10.1039/C39750000895

    Article  Google Scholar 

  51. Ashworth, T.V., Berry, M., Howard, J.A.K., Laguna, M., and Stone, F.G.A., J. Chem. Soc. Dalton Trans., 1980, no. 9, p. 1615. https://doi.org/10.1039/DT9800001615

    Article  Google Scholar 

  52. Fischer, E.O. and Beck, H.-J.-J., Angew. Chem. Int. Ed., 1970, vol. 9, no. 1, p. 72. https://doi.org/10.1002/anie.197000721

    CAS  Article  Google Scholar 

  53. Chang, Y.-H., Fu, C.-F., Liu, Y.-H., Peng, S.-M., Chen, J.-T., and Liu, S.-T., Dalton Trans., 2009, no. 5, p. 861. https://doi.org/10.1039/B814234C

    Article  Google Scholar 

  54. Meana, I., Toledo, A., Albeniz, A.C., and Espinet, P., Chem. Eur. J., 2012, vol. 18, no. 25, p. 7658. https://doi.org/10.1002/chem.201200575

    CAS  Article  PubMed  Google Scholar 

  55. Fu, C.-F., Liu, Y.-H., Peng, S.-M., and Liu, S.-T., Tetrahedron, 2010, vol. 66, no. 12, p. 2119. https://doi.org/10.1016/j.tet.2010.01.081

    CAS  Article  Google Scholar 

  56. Jordi, L., Moreto, J.M., Ricart, S., Vinas, J.M., Mejias, M., and Molins, E., Organometallics, 1992, vol. 11, no. 11, p. 3507. https://doi.org/10.1021/om00059a011

    CAS  Article  Google Scholar 

  57. Albéniz, A.C., Espinet, P., Manrique, R., and Pérez-Mateo, A., Angew. Chem. Int. Ed., 2002, vol. 41, no. 13, p. 2363. https://doi.org/10.1002/1521-3773(20020703)41:13<2236::AID-ANIE2236>3.0.CO;2-3

    Article  Google Scholar 

  58. Liu, S.-T., Hsieh, T.-Y., Lee, G.-H., and Peng, S.-M., Organometallics, 1998, vol. 17, no. 6, p. 993. https://doi.org/10.1021/OM9709897

    CAS  Article  Google Scholar 

  59. Kuo, H.-Y., Liu, Y.-H., Peng, S.-M., and Liu, S.-T., Organometallics, 2012, vol. 31, no. 20, p. 7248. https://doi.org/10.1021/om300800c

    CAS  Article  Google Scholar 

  60. Liu, S.-T., Lee, C.-I., Fu, C.-F., Chen, C.-H., Liu, Y.-H., Elsevier, C.J., Peng, S.-M., and Chen, J.-T., Organometallics, 2009, vol. 28, no. 24, p. 6957. https://doi.org/10.1021/om900776j

    CAS  Article  Google Scholar 

  61. Aumann, R. and Fischer, E.O., Chem. Ber., 1981, vol. 114, no. 5, p. 1853. https://doi.org/10.1002/cber.19811140523

    CAS  Article  Google Scholar 

  62. Ku, R.-Z., Huang, J.-C., Cho, J.-Y., Kiang, F.-M., Reddy, K.R., Chen, Y., Lee, K.-J., Lee, J.-H., Lee, G.-H., Peng, S., and Liu, S.-T., Organometallics, 1999, vol. 18, no. 11, p. 2145. https://doi.org/10.1021/om981023d

    CAS  Article  Google Scholar 

  63. Fu, C.-F., Chang, Y.-H., Liu, Y.-H., Peng, S.-M., Elsevier, C.J., Chen, J.-T., Liu, S.-T., Dalton Trans., 2009, no. 35, p. 6991. https://doi.org/10.1039/b906016b

    CAS  Article  Google Scholar 

  64. Fu, C.-F.F., Lee, C.-C.C., Liu, Y.-H.H., Peng, S.-M.M., Warsink, S., Elsevier, C.J., Chen, J.-T.T., and Liu, S.-T.T., Inorg. Chem., 2010, vol. 49, no. 6, p. 3011. https://doi.org/10.1021/ic9025188

    CAS  Article  PubMed  Google Scholar 

  65. Bezuidenhout, D.I., Van Der Westhuizen, B., Rosenthal, A.J., Wörle, M., Liles, D.C., Fernández, I., Woerle, M., Liles, D.C., Fernandez, I., Wörle, M., Liles, D.C., and Fernández, I., Dalton Trans., 2014, vol. 43, no. 2, p. 398. https://doi.org/10.1039/C3DT52961D

    CAS  Article  PubMed  Google Scholar 

  66. Albéniz, A.C., Espinet, P., Pérez-Mateo, A., Nova, A., Ujaque, G., Albeniz, A.C., Espinet, P., Perez-Mateo, A., Nova, A., and Ujaque, G., Organometallics, 2006, vol. 25, no. 5, p. 1293. https://doi.org/10.1021/om051028s

    CAS  Article  Google Scholar 

  67. Adams, R.D., Babin, J.E., and Wang, J.-G.G., Polyhedron, 1989, vol. 8, no. 19, p. 2351. https://doi.org/10.1016/S0277-5387(00)80296-X

    CAS  Article  Google Scholar 

  68. Albéniz, A.C., Espinet, P., Manrique, R.R.R.R., Pérez-Mateo, A., Albeniz, A.C., Espinet, P., Manrique, R.R.R.R., and Perez-Mateo, A., Chem. Eur. J., 2005, vol. 11, no. 5, p. 1565. https://doi.org/10.1002/chem.200400811

    CAS  Article  PubMed  Google Scholar 

  69. Meana, I., Albéniz, A.C., and Espinet, P., Organometallics, 2008, vol. 27, no. 16, p. 4193. https://doi.org/10.1021/om800358f

    CAS  Article  Google Scholar 

  70. Hahn, F.E., Meier, N., and Pape, T., Z. Naturforsch. (B), 2006, vol. 61, no. 7, p. 820. https://doi.org/10.1515/znb-2006-0708

    CAS  Article  Google Scholar 

  71. Jacobsen, H., Correa, A., Poater, A., Costabile, C., and Cavallo, L., Coord. Chem. Rev., 2009, vol. 253, no. 5–6, p. 687. https://doi.org/10.1016/j.ccr.2008.06.006

    CAS  Article  Google Scholar 

  72. Garber, S.B., Kingsbury, J.S., Gray, B.L., and Hoveyda, A.H., J. Am. Chem. Soc., 2000, vol. 122, no. 34, p. 8168. https://doi.org/10.1021/ja001179g

    CAS  Article  Google Scholar 

  73. Munz, D., Organometallics, 2018, vol. 37, no. 3, p. 275. https://doi.org/10.1021/acs.organomet.7b00720

    CAS  Article  Google Scholar 

  74. Kamal, F., Colombel-Rouen, S., Dumas, A., Guégan, J.-P.P., Roisnel, T., Dorcet, V., Baslé, O., Rouen, M., and Mauduit, M., Chem. Commun., 2019, vol. 55, no. 77, p. 11583. https://doi.org/10.1039/C9CC05776E

    CAS  Article  Google Scholar 

  75. Nascimento, D.L., Gawin, A., Gawin, R., Guńka, P.A., Zachara, J., Skowerski, K., and Fogg, D.E., J. Am. Chem. Soc., 2019, vol. 141, no. 27, p. 10626. https://doi.org/10.1021/jacs.9b05362

    CAS  Article  PubMed  Google Scholar 

  76. Gawin, R., Tracz, A., Chwalba, M., Kozakiewicz, A., Trzaskowski, B., and Skowerski, K., ACS Catal., 2017, vol. 7, no. 8, p. 5443. https://doi.org/10.1021/acscatal.7b00597

    CAS  Article  Google Scholar 

  77. Monfette, S., Marleau-Gillette, J., Conrad, J.C., McDonald, R., and Fogg, D.E., Dalton Trans., 2012, vol. 41, no. 48, p. 14476. https://doi.org/10.1039/c2dt32568c

    CAS  Article  PubMed  Google Scholar 

  78. Imlinger, N., Mayr, M., Wang, D., Wurst, K., and Buchmeiser, M.R., Adv. Synth. Catal., 2004, vol. 346, no. 13–15, p. 1836. https://doi.org/10.1002/adsc.200404176

    CAS  Article  Google Scholar 

  79. Asay, M., Pincer Compounds, 2018, p. 431. https://doi.org/10.1016/B978-0-12-812931-9.00021-9

  80. Pugh, D., Boyle, A., and Danopoulos, A.A., Dalton Trans., 2008, no. 8, p. 1087. https://doi.org/10.1039/b715769j

    CAS  Article  Google Scholar 

  81. Mrutu, A., Dickie, D.A., Goldberg, K.I., and Kemp, R.A., Inorg. Chem., 2011, vol. 50, no. 7, p. 2729. https://doi.org/10.1021/ic200029c

    CAS  Article  PubMed  Google Scholar 

  82. Huynh, H.V., Koh, C.H.M., and Nguyen, V.H., Dalton Trans., 2017, vol. 46, no. 34, p. 11318. https://doi.org/10.1039/C7DT01912B

    CAS  Article  PubMed  Google Scholar 

  83. DelPozo, J., Casares, J.A., and Espinet, P., Chem. Commun., 2013, vol. 49, no. 65, p. 7246. https://doi.org/10.1039/c3cc43133a

    CAS  Article  Google Scholar 

  84. Meng, G., Kakalis, L., Nolan, S.P., and Szostak, M., Tetrahedron Lett., 2019, vol. 60, no. 4, p. 378. https://doi.org/10.1016/j.tetlet.2018.12.059

    CAS  Article  Google Scholar 

  85. Junor, G.P., Lorkowski, J., Weinstein, C.M., Jazzar, R., Pietraszuk, C., and Bertrand, G., Angew. Chem. Int. Ed., 2020, vol. 59, no. 49, p. 22028. https://doi.org/10.1002/anie.202010744

    CAS  Article  Google Scholar 

  86. Verlinden, K., Buhl, H., Frank, W., and Ganter, C., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 14, p. 2416. https://doi.org/10.1002/ejic.201500174

    CAS  Article  Google Scholar 

  87. Nayak, S. and Gaonkar, S.L., ChemMedChem., 2020. https://doi.org/10.1002/cmdc.202000836

  88. Liu, X., Pattacini, R., Deglmann, P., and Braunstein, P., Organometallics, 2011, vol. 30, no. 12, p. 3302. https://doi.org/10.1021/om200033m

    CAS  Article  Google Scholar 

  89. Ai, P., Mauro, M., De Cola, L., Danopoulos, A.A., and Braunstein, P., Angew. Chem. Int. Ed., 2016, vol. 55, no. 10, p. 3338. https://doi.org/10.1002/anie.201510150

    CAS  Article  Google Scholar 

  90. Deacon, G.B., Delbridge, E.E., Skelton, B.W., and White, A.H., Eur. J. Inorg. Chem., 1998, no. 5, p. 543. https://doi.org/10.1002/(SICI)1099-0682(199805)1998:5<543::AID-EJIC543>3.0.CO;2-D

    Article  Google Scholar 

  91. De Bruin-Dickason, C.N., Boutland, A.J., Dange, D., Deacon, G.B., Jones, C., Dalton Trans., 2018, vol. 47, no. 28, p. 9512. https://doi.org/10.1039/c8dt02138d

    CAS  Article  PubMed  Google Scholar 

  92. Arnold, P.L. and Scarisbrick, A.C., Organometallics, 2004, vol. 23, no. 11, p. 2519. https://doi.org/10.1021/om0498091

    CAS  Article  Google Scholar 

  93. Mas-Marzá, E., Sanaú, M., and Peris, E., Inorg. Chem., 2005, vol. 44, no. 26, p. 9961. https://doi.org/10.1021/ic051272b

    CAS  Article  PubMed  Google Scholar 

  94. Puerta-Oteo, R., Jiménez, M.V., Lahoz, F.J., Modrego, F.J., Passarelli, V., and Pérez-Torrente, J.J., Inorg. Chem., 2018, vol. 57, no. 9, p. 5526. https://doi.org/10.1021/acs.inorgchem.8b00498

    CAS  Article  PubMed  Google Scholar 

  95. Patil, S., Deally, A., Hackenberg, F., Kaps, L., Müller-Bunz, H., Schobert, R., and Tacke, M., Helv. Chim. Acta, 2011, vol. 94, no. 9, p. 1551. https://doi.org/10.1002/hlca.201100107

    CAS  Article  Google Scholar 

  96. Haque, R.A., Ghdhayeb, M.Z., Budagumpi, S., Khadeer Ahamed, M.B., and Abdul Majid, A.M.S., RSC Adv., 2016, vol. 6, no. 65, p. 60407. https://doi.org/10.1039/C6RA09788J

    CAS  Article  Google Scholar 

  97. Aher, S., Das, A., Muskawar, P., Osborne, J., and Bhagat, P., J. Mol. Liq., 2017, vol. 233, p. 270. https://doi.org/10.1016/j.molliq.2017.03.021

    CAS  Article  Google Scholar 

  98. Goetzfried, S.K., Gallati, C.M., Cziferszky, M., Talmazan, R.A., Wurst, K., Liedl, K.R., Podewitz, M., and Gust, R., Inorg. Chem., 2020, vol. 59, no. 20, p. 15312. https://doi.org/10.1021/acs.inorgchem.0c02298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Simler, T., Feuerstein, T.J., Yadav, R., Gamer, M.T., and Roesky, P.W., Chem. Commun., 2019, vol. 55, no. 2, p. 222. https://doi.org/10.1039/C8CC08120D

    CAS  Article  Google Scholar 

  100. Gómez-Suárez, A., Nelson, D.J., and Nolan, S.P., Chem. Commun., 2017, vol. 53, no. 18, p. 2650. https://doi.org/10.1039/c7cc00255f

    Article  Google Scholar 

  101. Normand, A.T., Nechaev, M.S., and Cavell, K.J., Chem. Eur. J., 2009, vol. 15, no. 29, p. 7063. https://doi.org/10.1002/chem.200900373

    CAS  Article  PubMed  Google Scholar 

  102. Warsink, S., van Aubel, C.M.S., Weigand, J.J., Liu, S.-T., and Elsevier, C.J., Eur. J. Inorg. Chem., 2010, no. 35, p. 5556. https://doi.org/10.1002/ejic.201000768

    CAS  Article  Google Scholar 

  103. Scattolin, T., Canovese, L., Visentin, F., Santo, C., and Demitri, N., Polyhedron, 2018, vol. 154, p. 382. https://doi.org/10.1016/j.poly.2018.08.007

    CAS  Article  Google Scholar 

  104. Canovese, L., Visentin, F., Levi, C., Santo, C., and Bertolasi, V., Inorg. Chim. Acta, 2012, vol. 390, p. 105. https://doi.org/10.1016/j.ica.2012.04.018

    CAS  Article  Google Scholar 

  105. Ai, P., Monakhov, K.Y., van Leusen, J., Kögerler, P., Gourlaouen, C., Tromp, M., Welter, R., Danopoulos, A.A., and Braunstein, P., Chem. Eur. J., 2018, vol. 24, no. 35, p. 8787. https://doi.org/10.1002/chem.201801170

    CAS  Article  PubMed  Google Scholar 

  106. Warsink, S., Chang, I.-H., Weigand, J.J., Hauwert, P., Chen, J.-T., and Elsevier, C.J., Organometallics, 2010, vol. 29, no. 20, p. 4555. https://doi.org/10.1021/om100670u

    CAS  Article  Google Scholar 

  107. Warsink, S., Bosman, S., Weigand, J.J., and Elsevier, C.J., Appl. Organomet. Chem., 2011, vol. 25, no. 4, p. 276. https://doi.org/10.1002/aoc.1754

    CAS  Article  Google Scholar 

  108. Sluijter, S.N., Warsink, S., Lutz, M., and Elsevier, C.J., Dalton Trans., 2013, vol. 42, no. 20, p. 7365. https://doi.org/10.1039/c3dt32835j

    CAS  Article  PubMed  Google Scholar 

  109. Tromp, D.S., Hauwert, P., and Elsevier, C.J., Appl. Organomet. Chem., 2012, vol. 26, no. 7, p. 335. https://doi.org/10.1002/aoc.2866

    CAS  Article  Google Scholar 

  110. Scattolin, T., Santo, C., Demitri, N., Canovese, L., and Visentin, F., Dalton Trans., 2020, vol. 49, no. 17, p. 5684. https://doi.org/10.1039/d0dt01144d

    CAS  Article  PubMed  Google Scholar 

  111. Scattolin, T., Canovese, L., Demitri, N., Santo, C., and Visentin, F., Polyhedron, 2019, vol. 173, p. 114144. https://doi.org/10.1016/j.poly.2019.114144

    CAS  Article  Google Scholar 

  112. Scattolin, T., Pangerc, N., Lampronti, I., Tupini, C., Gambari, R., Marvelli, L., Rizzolio, F., Demitri, N., Canovese, L., and Visentin, F., J. Organomet. Chem., 2019, vol. 899, p. 120857. https://doi.org/10.1016/j.jorganchem.2019.07.008

    CAS  Article  Google Scholar 

  113. Canovese, L., Visentin, F., Scattolin, T., Santo, C., and Bertolasi, V., Polyhedron, 2018, vol. 144, p. 131. https://doi.org/10.1016/j.poly.2018.01.010

    CAS  Article  Google Scholar 

  114. Mechler, M., Latendorf, K., Frey, W., and Peters, R.R., Organometallics, 2013, vol. 32, no. 1, p. 112. https://doi.org/10.1021/om3008629

    CAS  Article  Google Scholar 

  115. Mechler, M., Frey, W., and Peters, R.R., Organometallics, 2014, vol. 33, no. 19, p. 5492. https://doi.org/10.1021/om500762r

    CAS  Article  Google Scholar 

  116. Labinger, J.A., Organometallics, 2015, vol. 34, no. 20, p. 4784. https://doi.org/10.1021/acs.organomet.5b00565

    CAS  Article  Google Scholar 

  117. Scheetz, P.M., Blank, N.F., Gibbons, S.K., Glueck, D.S., and Rheingold, A.L., Inorg. Chim. Acta, 2018, vol. 483, p. 111. https://doi.org/10.1016/j.ica.2018.08.007

    CAS  Article  Google Scholar 

  118. Lee, J.H., Jeon, H.T., Kim, Y.J., Lee, K.E., Ok Jang, Y., and Lee, S.W., Eur. J. Inorg. Chem., 2011, no. 11, p. 1750. https://doi.org/10.1002/ejic.201001257

    CAS  Article  Google Scholar 

  119. Jiang, Y., Gendy, C., and Roesler, R., Organometallics, 2018, vol. 37, no. 7, p. 1123. https://doi.org/10.1021/acs.organomet.8b00022

    CAS  Article  Google Scholar 

  120. Lu, Z., Cramer, S.A., and Jenkins, D.M., Chem. Sci., 2012, vol. 3, no. 10, p. 3081. https://doi.org/10.1039/c2sc20628e

    CAS  Article  Google Scholar 

  121. Cooke, C.E., Ramnial, T., Jennings, M.C., Pomeroy, R.K., and Clyburne, J.A.C.C., Dalton Trans., 2007, vol. 3, no. 18, p. 1755. https://doi.org/10.1039/b703071c

    CAS  Article  Google Scholar 

  122. Cooke, C.E., Jennings, M.C., Pomeroy, R.K., and Clyburne, J.A.C.C., Organometallics, 2007, vol. 26, no. 25, p. 6059. https://doi.org/10.1021/om7007293

    CAS  Article  Google Scholar 

  123. Cooke, C.E., Jennings, M.C., Katz, M.J., Pomeroy, R.K., and Clyburne, J.A.C.C., Organometallics, 2008, vol. 27, no. 22, p. 5777. https://doi.org/10.1021/om800577x

    CAS  Article  Google Scholar 

  124. Lalaoui, N., Reuillard, B., Philouze, C., Holzinger, M., Cosnier, S., and Le Goff, A., Organometallics, 2016, vol. 35, no. 17, p. 2987. https://doi.org/10.1021/acs.organomet.6b00508

    CAS  Article  Google Scholar 

  125. Bayon Castanon, E., Kaposi, M., Reich, R.M., and Kuehn, F.E., Dalton Trans., 2018, vol. 47, no. 7, p. 2318. https://doi.org/10.1039/C7DT04684G

    CAS  Article  PubMed  Google Scholar 

  126. Collins, L.R., Rajabi, N.A., Macgregor, S.A., Mahon, M.F., and Whittlesey, M.K., Angew. Chem. Int. Ed., 2016, vol. 55, no. 50, p. 15539. https://doi.org/10.1002/anie.201608081

    CAS  Article  Google Scholar 

  127. Abdalla, J.A.B., Riddlestone, I.M., Tirfoin, R., Phillips, N., Bates, J.I., and Aldridge, S., Chem. Commun., 2013, vol. 49, no. 49, p. 5547. https://doi.org/10.1039/c3cc42342e

    CAS  Article  Google Scholar 

  128. Hollmann, D., Kennedy, A.R., Spicer, M.D., Ramnial, T., Clyburne, J.A.C., and Abernethy, C.D., J. Organomet. Chem., 2005, vol. 690, no. 23, p. 5346. https://doi.org/10.1016/j.jorganchem.2005.05.008

    CAS  Article  Google Scholar 

  129. Shcherbina, N.A., Kazakov, I.V., Spiridonova, D.V., Suslonov, V.V., Khoroshilova, O.V., Mikhailov, V.N., and Timoshkin, A.Y., Russ. J. Gen. Chem., 2020, vol. 90, no. 12, p. 2503. https://doi.org/10.1134/S1070363220120440

    CAS  Article  Google Scholar 

  130. Mikhaylov, V.N., Kazakov, I.V., Parfeniuk, T.N., Khoroshilova, O.V., Scheer, M., Timoshkin, A.Y., and Balova, I.A., Dalton Trans., 2021, vol. 50, no. 8, p. 2872. https://doi.org/10.1039/D1DT00235J

    CAS  Article  PubMed  Google Scholar 

  131. Tang, S., Monot, J., El-Hellani, A., Michelet, B., Guillot, R., Bour, C., and Gandon, V., Chem. Eur. J., 2012, vol. 18, no. 33, p. 10239. https://doi.org/10.1002/chem.201201202

    CAS  Article  PubMed  Google Scholar 

  132. Naderizadeh, B. and Bayat, M., Mendeleev Commun., 2021, vol. 31, no. 2, p. 179. https://doi.org/10.1016/j.mencom.2021.03.011

    CAS  Article  Google Scholar 

  133. Nemcsok, D., Wichmann, K., and Frenking, G., Organometallics, 2004, vol. 23, no. 15, p. 3640. https://doi.org/10.1021/om049802j

    CAS  Article  Google Scholar 

  134. Naderizadeh, B. and Bayat, M., ACS Omega, 2020, vol. 5, no. 42, p. 26999. https://doi.org/10.1021/acsomega.0c01471

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Jerabek, P., Roesky, H.W., Bertrand, G., and Frenking, G., J. Am. Chem. Soc., 2014, vol. 136, no. 49, p. 17123. https://doi.org/10.1021/ja508887s

    CAS  Article  PubMed  Google Scholar 

  136. Caytan, E. and Roland, S., Organometallics, 2014, vol. 33, no. 8, p. 2115. https://doi.org/10.1021/om401124y

    CAS  Article  Google Scholar 

  137. Mikhaylov, V.N., Pavlov, A.O., Ogorodnov, Y.V, Spiridonova, D.V., Sorokoumov, V.N., and Balova, I.A., Chem. Heterocycl. Compd., 2020, vol. 56, no. 7, p. 915. https://doi.org/10.1007/s10593-020-02750-0

    CAS  Article  Google Scholar 

  138. Morozov, O.S., Lunchev, A.V, Bush, A.A., Tukov, A.A., Asachenko, A.F., Khrustalev, V.N., Zalesskiy, S.S., Ananikov, V.P., and Nechaev, M.S., Chem. Eur. J., 2014, vol. 20, no. 20, p. 6162. https://doi.org/10.1002/chem.201303760

    CAS  Article  PubMed  Google Scholar 

  139. Kolychev, E.L., Portnyagin, I.A., Shuntikov, V.V., Khrustalev, V.N., and Nechaev, M.S., J. Organomet. Chem., 2009, vol. 694, no. 15, p. 2454. https://doi.org/10.1016/j.jorganchem.2009.03.014

    CAS  Article  Google Scholar 

  140. Marchenko, A., Koidan, G., Hurieva, A., Vlasenko, Y., Kostyuk, A., Lenarda, A., Biffis, A., Tubaro, C., Baron, M., Graiff, C., and Nestola, F., J. Organomet. Chem., 2017, vol. 829, no. I, p. 71. https://doi.org/10.1016/j.jorganchem.2016.09.030

    CAS  Article  Google Scholar 

  141. Al Thagfi, J., Lavoie, G.G., Thagfi, J.Al, and Lavoie, G.G., Organometallics, 2012, vol. 31, no. 21, p. 7351. https://doi.org/10.1021/om300873k

    CAS  Article  Google Scholar 

  142. Mayr, M., Wurst, K., Ongania, K.-H., and Buchmeiser, M.R., Chem. Eur. J., 2004, vol. 10, no. 5, p. 1256. https://doi.org/10.1002/chem.200305437

    CAS  Article  PubMed  Google Scholar 

  143. Herrmann, W.A., Schneider, S.K., Öfele, K., Sakamoto, M., and Herdtweck, E., J. Organomet. Chem., 2004, vol. 689, no. 15, p. 2441. https://doi.org/10.1016/j.jorganchem.2004.04.032

    CAS  Article  Google Scholar 

  144. Mayr, M., Buchmeiser, M.R., Macromol. Rapid Commun., 2004, vol. 25, no. 1, p. 231. https://doi.org/10.1002/marc.200300173

    CAS  Article  Google Scholar 

  145. Wei, Q., Ge, B.-D., Zhang, J., Sun, A.-H., Li, J.-H., Han, S.-D., and Wang, G.-M., Chem. Asian J., 2019, vol. 14, no. 2, p. 269. https://doi.org/10.1002/asia.201801555

    CAS  Article  PubMed  Google Scholar 

  146. Baron, M., Tubaro, C., Cairoli, M.L.C., Orian, L., Bogialli, S., Basato, M., Natile, M.M., and Graiff, C., Organometallics, 2017, vol. 36, no. 12, p. 2285. https://doi.org/10.1021/acs.organomet.7b00163

    CAS  Article  Google Scholar 

  147. Yu, T., Shen, J., Fu, Y., and Fu, Y., CrystEngComm., 2014, vol. 16, no. 24, p. 5280. https://doi.org/10.1039/c3ce42579g

    CAS  Article  Google Scholar 

  148. Li, L., Chen, H., Qiao, Y.-Z., and Niu, Y.-Y., Inorg. Chim. Acta, 2014, vol. 409, no. PB, p. 227. https://doi.org/10.1016/j.ica.2013.09.029

    CAS  Article  Google Scholar 

  149. Song, L.-S., Wang, H.-M., Niu, Y.-Y., Hou, H.-W., and Zhu, Y., CrystEngComm., 2012, vol. 14, no. 15, p. 4927. https://doi.org/10.1039/c2ce25103e

    CAS  Article  Google Scholar 

  150. Kolychev, E.L., Shuntikov, V.V, Khrustalev, V.N., Bush, A.A., and Nechaev, M.S., Dalton Trans., 2011, vol. 40, no. 12, p. 3074. https://doi.org/10.1039/c0dt01630f

    CAS  Article  PubMed  Google Scholar 

  151. Kolychev, E.L., Asachenko, A.F., Dzhevakov, P.B., Bush, A.A., Shuntikov, V.V., Khrustalev, V.N., and Nechaev, M.S., Dalton Trans., 2013, vol. 42, no. 19, p. 6859. https://doi.org/10.1039/c3dt32860k

    CAS  Article  PubMed  Google Scholar 

  152. Dyson, G., Frison, J.-C., Simonovic, S., Whitwood, A.C., and Douthwaite, R.E., Organometallics, 2008, vol. 27, no. 2, p. 281. https://doi.org/10.1021/om7009478

    CAS  Article  Google Scholar 

  153. Bildstein, B., Malaun, M., Kopacka, H., Wurst, K., Mitterboeck, M., Ongania, K.-H.H., Opromolla, G., Zanello, P., Mitterböck, M., Ongania, K.-H.H., Opromolla, G., and Zanello, P., Organometallics, 1999, vol. 18, no. 21, p. 4325. https://doi.org/10.1021/om990377h

    CAS  Article  Google Scholar 

  154. Li, Q., Li, X., Yang, J., Song, H.-B., and Tang, L.-F., Polyhedron, 2013, vol. 59, p. 29. https://doi.org/10.1016/j.poly.2013.04.032

    CAS  Article  Google Scholar 

  155. Latendorf, K., Mechler, M., Schamne, I., Mack, D., Frey, W., and Peters, R.R., Eur. J. Org. Chem., 2017, vol. 2017, no. 28, p. 4140. https://doi.org/10.1002/ejoc.201700436

    CAS  Article  Google Scholar 

  156. Pell, T.P., Wilson, D.J.D., Skelton, B.W., Dutton, J.L., and Barnard, P.J., Inorg. Chem., 2016, vol. 55, no. 14, p. 6882. https://doi.org/10.1021/acs.inorgchem.6b00222

    CAS  Article  PubMed  Google Scholar 

  157. Seitz, S.C., Rominger, F., and Straub, B.F., Organometallics, 2013, vol. 32, no. 8, p. 2427. https://doi.org/10.1021/om400143u

    CAS  Article  Google Scholar 

  158. Bitzer, M.J., Kühn, F.E., and Baratta, W., J. Catal., 2016, vol. 338, p. 222. https://doi.org/10.1016/j.jcat.2016.02.031

    CAS  Article  Google Scholar 

  159. Longevial, J.-F., Langlois, A., Buisson, A., Devillers, C.H., Clément, S., van der Lee, A., Harvey, P.D., and Richeter, S., Organometallics, 2016, vol. 35, no. 5, p. 663. https://doi.org/10.1021/acs.organomet.5b00966

    CAS  Article  Google Scholar 

  160. Bente, S., Kampert, F., Tan, T.T.Y.Y., and Hahn, F.E., Chem. Commun., 2018, vol. 54, no. 91, p. 12887. https://doi.org/10.1039/C8CC08440H

    CAS  Article  Google Scholar 

  161. Böhmer, M., Kampert, F., Tan, T.T.Y., Guisado-Barrios, G., Peris, E., and Hahn, F.E., Organometallics, 2018, vol. 37, no. 21, p. 4092. https://doi.org/10.1021/acs.organomet.8b00642

    CAS  Article  Google Scholar 

  162. Böhmer, M., Guisado-Barrios, G., Kampert, F., Roelfes, F., Tan, T.T.Y., Peris, E., and Hahn, F.E., Organometallics, 2019, vol. 38, no. 9, p. 2120. https://doi.org/10.1021/acs.organomet.9b00120

    CAS  Article  Google Scholar 

  163. Pardatscher, L., Bitzer, M.J., Jandl, C., Kück, J.W., Reich, R.M., Kühn, F.E., and Baratta, W., Dalton Trans., 2019, vol. 48, no. 1, p. 79. https://doi.org/10.1039/C8DT03713B

    CAS  Article  Google Scholar 

  164. Teng, Q. and Huynh, H.V., Organometallics, 2018, vol. 37, no. 21, p. 4119. https://doi.org/10.1021/acs.organomet.8b00664

    CAS  Article  Google Scholar 

  165. Visentin, F. and Togni, A., Organometallics, 2007, vol. 26, no. 15, p. 3746. https://doi.org/10.1021/om0702126

    CAS  Article  Google Scholar 

  166. Rosen, E.L., Varnado, C.D., Tennyson, A.G., Khramov, D.M., Kamplain, J.W., Sung, D.H., Cresswell, P.T., Lynch, V.M., and Bielawski, C.W., Organometallics, 2009, vol. 28, no. 23, p. 6695. https://doi.org/10.1021/om900698x

    CAS  Article  Google Scholar 

  167. Maity, R., Schulte To Brinke, C., and Hahn, F.E., Dalton Trans., 2013, vol. 42, no. 36, p. 12857. https://doi.org/10.1039/c3dt51572a

    CAS  Article  PubMed  Google Scholar 

  168. Peuntinger, K., Pilz, T.D., Staehle, R., Schaub, M., Kaufhold, S., Petermann, L., Wunderlin, M., Görls, H., Heinemann, F.W., Li, J., Drewello, T., Vos, J.G., Guldi, D.M., and Rau, S., Dalton Trans., 2014, vol. 43, no. 36, p. 13683. https://doi.org/10.1039/c4dt01546k

    CAS  Article  PubMed  Google Scholar 

  169. Webster, A.A., Prasad, S.K.K.K., Hodgkiss, J.M., and Hoberg, J.O., Dalton Trans., 2015, vol. 44, no. 8, p. 3728. https://doi.org/10.1039/C4DT03086A

    CAS  Article  PubMed  Google Scholar 

  170. Bitzer, M.J., Poethig, A., Jandl, C., Kuehn, F.E., Baratta, W., Pöthig, A., Jandl, C., Kühn, F.E., and Baratta, W., Dalton Trans., 2015, vol. 44, no. 26, p. 11686. https://doi.org/10.1039/C5DT01914A

    CAS  Article  PubMed  Google Scholar 

  171. Muenzner, J.K., Biersack, B., Albrecht, A., Rehm, T., Lacher, U., Milius, W., Casini, A., Zhang, J.-J.J., Ott, I., Brabec, V., Stuchlikova, O., Andronache, I.C., Kaps, L., Schuppan, D., and Schobert, R., Chem. Eur. J., 2016, vol. 22, no. 52, p. 18953. https://doi.org/10.1002/chem.201604246

    CAS  Article  PubMed  Google Scholar 

  172. Ibanez, S., Poyatos, M., Dawe, L.N., Gusev, D., and Peris, E., Organometallics, 2016, vol. 35, no. 16, p. 2747. https://doi.org/10.1021/acs.organomet.6b00517

    CAS  Article  Google Scholar 

  173. Wang, W., Zhao, L., Lv, H., Zhang, G., Xia, C., Hahn, F.E., and Li, F., Angew. Chem. Int. Ed., 2016, vol. 55, no. 27, p. 7665. https://doi.org/10.1002/anie.201600999

    CAS  Article  Google Scholar 

  174. Simler, T., Braunstein, P., and Danopoulos, A.A., Angew. Chem. Int. Ed., 2015, vol. 54, no. 46, p. 13691. https://doi.org/10.1002/anie.201505958

    CAS  Article  Google Scholar 

  175. Ai, P., Gourlaouen, C., Danopoulos, A.A., and Braunstein, P., Inorg. Chem., 2016, vol. 55, no. 3, p. 1219. https://doi.org/10.1021/acs.inorgchem.5b02382

    CAS  Article  PubMed  Google Scholar 

  176. Powers, I.G. and Uyeda, C., ACS Catal., 2017, vol. 7, no. 2, p. 936. https://doi.org/10.1021/acscatal.6b02692

    CAS  Article  Google Scholar 

  177. Mazzacano, T.J. and Mankad, N.P., J. Am. Chem. Soc., 2013, vol. 135, no. 46, p. 17258. https://doi.org/10.1021/ja408861p

    CAS  Article  PubMed  Google Scholar 

  178. Maity, R., Birenheide, B.S., Breher, F., and Sarkar, B., ChemCatChem., 2021, vol. 13, no. 10, p. 2337. https://doi.org/10.1002/cctc.202001951

    CAS  Article  Google Scholar 

  179. Karunananda, M.K. and Mankad, N.P., Organometallics, 2017, vol. 36, no. 1, p. 220. https://doi.org/10.1021/acs.organomet.6b00356

    CAS  Article  Google Scholar 

  180. Mazzacano, T.J., Leon, N.J., Waldhart, G.W., and Mankad, N.P., Dalton Trans., 2017, vol. 46, no. 17, p. 5518. https://doi.org/10.1039/C6DT04533B

    CAS  Article  PubMed  Google Scholar 

  181. Anwar, M.T., Ali, S., Shahzadi, S., and Shahid, M., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2380. https://doi.org/10.1134/S1070363213120311

    CAS  Article  Google Scholar 

  182. Mui, Y.F., Fernández-Gallardo, J., Elie, B.T., Gubran, A., Maluenda, I., Sanaú, M., Navarro, O., and Contel, M., Organometallics, 2016, vol. 35, no. 9, p. 1218. https://doi.org/10.1021/acs.organomet.6b00051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. Tripathy, S.K., De, U., Dehury, N., Pal, S., Kim, H.S., and Patra, S., Dalton Trans., 2014, vol. 43, no. 39, p. 14546. https://doi.org/10.1039/c4dt01033g

    CAS  Article  PubMed  Google Scholar 

  184. Shi, C., Huang, M., Li, Q., Xie, G., Yang, C., and Yuan, A., Dalton Trans., 2018, vol. 47, no. 48, p. 17299. https://doi.org/10.1039/C8DT04007A

    CAS  Article  PubMed  Google Scholar 

  185. Simler, T., Möbius, K., Müller, K., Feuerstein, T.J., Gamer, M.T., Lebedkin, S., Kappes, M.M., and Roesky, P.W., Organometallics, 2019, vol. 38, no. 19, p. 3649. https://doi.org/10.1021/acs.organomet.9b00449

    CAS  Article  Google Scholar 

  186. Arifin, K., Majlan, E.H., Wan Daud, W.R., and Kassim, M.B., Int. J. Hydrogen Energy, 2012, vol. 37, no. 4, p. 3066. https://doi.org/10.1016/j.ijhydene.2011.11.052

    CAS  Article  Google Scholar 

  187. Rubio, M., Siegler, M.A., Spek, A.L., and Reek, J.N.H.H., Dalton Trans., 2010, vol. 39, no. 23, p. 5432. https://doi.org/10.1039/c003352a

    CAS  Article  PubMed  Google Scholar 

  188. Mendoza-Espinosa, D., Donnadieu, B., and Bertrand, G., Chem. Asian J., 2011, vol. 6, no. 4, p. 1099. https://doi.org/10.1002/asia.201000856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. Cesari, C., Conti, S., Zacchini, S., Zanotti, V., Cassani, M.C., and Mazzoni, R., Dalton Trans., 2014, vol. 43, no. 46, p. 17240. https://doi.org/10.1039/C4DT02747G

    CAS  Article  PubMed  Google Scholar 

  190. Oeschger, R.J. and Chen, P., J. Am. Chem. Soc., 2017, vol. 139, no. 3, p. 1069. https://doi.org/10.1021/jacs.6b12152

    CAS  Article  PubMed  Google Scholar 

  191. Batcup, R., Chiu, F.S.N., Annibale, V.T., Huh, J.-E.E.U., Tan, R., and Song, D., Dalton Trans., 2013, vol. 42, no. 46, p. 16343. https://doi.org/10.1039/c3dt52135d

    CAS  Article  PubMed  Google Scholar 

  192. Guo, S., Lim, M.H., and Huynh, H.V., Organometallics, 2013, vol. 32, no. 23, p. 7225. https://doi.org/10.1021/om400911u

    CAS  Article  Google Scholar 

  193. Henderson, W. and Oliver, A.G., Inorg. Chim. Acta, 2011, vol. 378, no. 1, p. 121. https://doi.org/10.1016/j.ica.2011.08.032

    CAS  Article  Google Scholar 

  194. Muñoz-Castro, A., Wang, G., Ponduru, T.T., and Dias, H.V.R., Phys. Chem. Chem. Phys., 2021, vol. 23, no. 2, p. 1577. https://doi.org/10.1039/d0cp05222a

    CAS  Article  PubMed  Google Scholar 

  195. Green, S.P., Jones, C., Mills, D.P., and Stasch, A., Organometallics, 2007, vol. 26, no. 14, p. 3424. https://doi.org/10.1021/om700345m

    CAS  Article  Google Scholar 

  196. Jayarathne, U., Mazzacano, T.J., Bagherzadeh, S., and Mankad, N.P., Organometallics, 2013, vol. 32, no. 14, p. 3986. https://doi.org/10.1021/om400471u

    CAS  Article  Google Scholar 

  197. Banerjee, S., Karunananda, M.K., Bagherzadeh, S., Jayarathne, U., Parmelee, S.R., Waldhart, G.W., and Mankad, N.P., Inorg. Chem., 2014, vol. 53, no. 20, p. 11307. https://doi.org/10.1021/ic5019778

    CAS  Article  PubMed  Google Scholar 

  198. Karunananda, M.K., Parmelee, S.R., Waldhart, G.W., and Mankad, N.P., Organometallics, 2015, vol. 34, no. 15, p. 3857. https://doi.org/10.1021/acs.organomet.5b00476

    CAS  Article  Google Scholar 

  199. Cheng, L.-J. and Mankad, N.P., J. Am. Chem. Soc., 2019, vol. 141, no. 8, p. 3710. https://doi.org/10.1021/jacs.9b00068

    CAS  Article  PubMed  Google Scholar 

  200. Jayarathne, U., Parmelee, S.R., and Mankad, N.P., Inorg. Chem., 2014, vol. 53, no. 14, p. 7730. https://doi.org/10.1021/ic501054z

    CAS  Article  PubMed  Google Scholar 

  201. Doyle, G., Eriksen, K.A., and Van Engen, D., J. Am. Chem. Soc., 1985, vol. 107, no. 26, p. 7914. https://doi.org/10.1021/ja00312a019

    CAS  Article  Google Scholar 

  202. Fortman, G.C., Slawin, A.M.Z.Z., and Nolan, S.P., Organometallics, 2010, vol. 29, no. 17, p. 3966. https://doi.org/10.1021/om100733n

    CAS  Article  Google Scholar 

  203. Santoro, O., Collado, A., Slawin, A.M.Z.Z., Nolan, S.P., and Cazin, C.S.J.J., Chem. Commun., 2013, vol. 49, no. 89, p. 10483. https://doi.org/10.1039/c3cc45488f

    CAS  Article  Google Scholar 

  204. Pranckevicius, C., Jimenéz-Halla, J.O.C., Kirsch, M., Krummenacher, I., and Braunschweig, H., J. Am. Chem. Soc., 2018, vol. 140, no. 33, p. 10524. https://doi.org/10.1021/jacs.8b05398

    CAS  Article  PubMed  Google Scholar 

  205. Della Pergola, R., Sironi, A., Rosehr, A., Colombo, V., and Sironi, A., Inorg. Chem. Commun., 2014, vol. 49, p. 27. https://doi.org/10.1016/j.inoche.2014.09.007

    CAS  Article  Google Scholar 

  206. Bortoluzzi, M., Cesari, C., Ciabatti, I., Femoni, C., Hayatifar, M., Iapalucci, M.C., Mazzoni, R., and Zacchini, S., J. Clust. Sci., 2017, vol. 28, no. 2, p. 703. https://doi.org/10.1007/s10876-016-1073-0

    CAS  Article  Google Scholar 

  207. Berti, B., Bortoluzzi, M., Cesari, C., Femoni, C., Iapalucci, M.C., Mazzoni, R., Vacca, F., and Zacchini, S., Inorg. Chem., 2019, vol. 58, no. 5, p. 2911. https://doi.org/10.1021/acs.inorgchem.8b03334

    CAS  Article  PubMed  Google Scholar 

  208. Berti, B., Bortoluzzi, M., Cesari, C., Femoni, C., Iapalucci, M.C., Mazzoni, R., and Zacchini, S., Eur. J. Inorg. Chem., 2020, vol. 2020, no. 22, p. 2191. https://doi.org/10.1002/ejic.202000260

    CAS  Article  Google Scholar 

  209. Lakliang, Y. and Mankad, N.P., Organometallics, 2020, vol. 39, no. 11, p. 2043. https://doi.org/10.1021/acs.organomet.0c00212

    CAS  Article  Google Scholar 

  210. Berti, B., Bortoluzzi, M., Cesari, C., Femoni, C., Iapalucci, M.C., Mazzoni, R., Vacca, F., and Zacchini, S., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 26, p. 3084. https://doi.org/10.1002/ejic.201900537

    CAS  Article  Google Scholar 

  211. Braunschweig, H., Brenner, P., Dewhurst, R.D., Kaupp, M., Müller, R., and Östreicher, S., Angew. Chemie Int. Ed., 2009, vol. 48, no. 51, p. 9735. https://doi.org/10.1002/anie.200904774

    CAS  Article  Google Scholar 

  212. Braunschweig, H., Damme, A., Dewhurst, R.D., Kramer, T., Östreicher, S., Radacki, K., and Vargas, A., J. Am. Chem. Soc., 2013, vol. 135, no. 6, p. 2313. https://doi.org/10.1021/ja310895w

    CAS  Article  PubMed  Google Scholar 

  213. Braunschweig, H., Ewing, W.C., Kramer, T., Mattock, J.D., Vargas, A., and Werner, C., Chem. Eur. J., 2015, vol. 21, no. 35, p. 12347. https://doi.org/10.1002/chem.201500788

    CAS  Article  PubMed  Google Scholar 

  214. Braunschweig, H., Ewing, W.C., Ghosh, S., Kramer, T., Mattock, J.D., Östreicher, S., Vargas, A., and Werner, C., Chem. Sci., 2016, vol. 7, no. 1, p. 109. https://doi.org/10.1039/C5SC03206G

    CAS  Article  PubMed  Google Scholar 

  215. Braunschweig, H., Dewhurst, R.D., Kraft, K., Östreicher, S., and Radacki, K., Angew. Chem. Int. Ed., 2012, vol. 51, no. 9, p. 2183. https://doi.org/10.1002/anie.201107248

    CAS  Article  Google Scholar 

  216. Braunschweig, H., Radacki, K., and Shang, R., Chem. Commun. Royal Society of Chemistry, 2013, vol. 49, no. 85, p. 9905. https://doi.org/10.1039/c3cc45455j

    CAS  Article  Google Scholar 

  217. Scharfe, S., Kraus, F., Stegmaier, S., Schier, A., and Fässler, T.F., Angew. Chem. Int. Ed., 2011, vol. 50, no. 16, p. 3630. https://doi.org/10.1002/anie.201001630

    CAS  Article  Google Scholar 

  218. Sevov, S.C. and Goicoechea, J.M., Organometallics, 2006, vol. 25, no. 24, p. 5678. https://doi.org/10.1021/om060480o

    CAS  Article  Google Scholar 

  219. Geitner, F.S. and Fässler, T.F., Eur. J. Inorg. Chem., 2016, vol. 2016, no. 17, p. 2688. https://doi.org/10.1002/ejic.201600258

    CAS  Article  Google Scholar 

  220. Schiegerl, L.J., Geitner, F.S., Fischer, C., Klein, W., Fässler, T.F., Zeit. anorg. allg. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, 2016, vol. 642, no. 24, p. 1419. https://doi.org/10.1002/zaac.201600295

  221. Geitner, F.S., Giebel, M.A., Pöthig, A., and Fässler, T.F., Molecules, 2017, vol. 22, no. 7, p. 1204. https://doi.org/10.3390/molecules22071204

    CAS  Article  PubMed Central  Google Scholar 

  222. Fischer, C., Klein, W., Jantke, L.A., Schiegerl, L.J., and Fässler, T.F., Zeit. anorg. allg. Chem., 2016, vol. 642, no. 22, p. 1314. https://doi.org/10.1002/zaac.201600296

    CAS  Article  Google Scholar 

  223. Schiegerl, L.J., Melaimi, M., Tolentino, D.R., Klein, W., Bertrand, G., Fässler, T.F., Inorg. Chem., 2019, vol. 58, no. 5, p. 3256. https://doi.org/10.1021/acs.inorgchem.8b03338

    CAS  Article  PubMed  Google Scholar 

  224. Geitner, F.S., Dums, J.V., and Fässler, T.F., J. Am. Chem. Soc., 2017, vol. 139, no. 34, p. 11933. https://doi.org/10.1021/jacs.7b05834

    CAS  Article  PubMed  Google Scholar 

  225. Geitner, F.S., Wallach, C., and Fässler, T.F., Chem. Eur. J., 2018, vol. 24, no. 16, p. 4103. https://doi.org/10.1002/chem.201705678

    CAS  Article  PubMed  Google Scholar 

  226. Wallach, C., Geitner, F.S., Klein, W., Fässler, T.F., Chem. Eur. J., 2019, vol. 25, no. 53, p. 12349. https://doi.org/10.1002/chem.201901673

    CAS  Article  PubMed  Google Scholar 

  227. Geitner, F.S., Klein, W., and Fässler, T.F., Angew. Chem. Int. Ed., 2018, vol. 57, no. 44, p. 14509. https://doi.org/10.1002/anie.201803476

    CAS  Article  Google Scholar 

  228. Geitner, F.S., Klein, W., and Fässler, T.F., Dalton Trans., 2017, vol. 46, no. 18, p. 5796. https://doi.org/10.1039/C7DT00754J

    CAS  Article  PubMed  Google Scholar 

  229. Bortoluzzi, M., Cesari, C., Ciabatti, I., Femoni, C., Iapalucci, M.C., and Zacchini, S., Inorg. Chem., 2017, vol. 56, no. 11, p. 6532. https://doi.org/10.1021/acs.inorgchem.7b00665

    CAS  Article  PubMed  Google Scholar 

  230. Kong, L., Morvan, J., Pichon, D., Jean, M., Albalat, M., Vives, T., Colombel-Rouen, S., Giorgi, M., Dorcet, V., Roisnel, T., Crévisy, C., Nuel, D., Nava, P., Humbel, S., Vanthuyne, N., Mauduit, M., and Clavier, H., J. Am. Chem. Soc., 2020, vol. 142, no. 1, p. 93. https://doi.org/10.1021/jacs.9b12698

    CAS  Article  PubMed  Google Scholar 

  231. Zhang, S., Shang, R., Nakamoto, M., Yamamoto, Y., Adachi, Y., and Ohshita, J., Dalton Trans., 2019, vol. 48, no. 32, p. 12250. https://doi.org/10.1039/C9DT02435B

    CAS  Article  PubMed  Google Scholar 

  232. Evans, K.J., Campbell, C.L., Haddow, M.F., Luz, C., Morton, P.A., and Mansell, S.M., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 46, p. 4894. https://doi.org/10.1002/ejic.201901003

    CAS  Article  Google Scholar 

  233. Lake, B.R.M. and Willans, C.E., Organometallics, 2014, vol. 33, no. 8, p. 2027. https://doi.org/10.1021/om500178e

    CAS  Article  Google Scholar 

  234. Cabeza, J.A., Fernández-Colinas, J.M., García-Álvarez, P., Pérez-Carreño, E., Pruneda, V., and Van der Maelen, J.F., Chem. Eur. J., 2013, vol. 19, no. 28, p. 9251. https://doi.org/10.1002/chem.201204250

    CAS  Article  PubMed  Google Scholar 

  235. Han, X., Koh, L.-L., Liu, Z.-P., Weng, Z., and Hor, T.S.A., Organometallics, 2010, vol. 29, no. 11, p. 2403. https://doi.org/10.1021/om100277f

    CAS  Article  Google Scholar 

  236. Gischig, S. and Togni, A., Organometallics, 2005, vol. 24, no. 2, p. 203. https://doi.org/10.1021/om049097e

    CAS  Article  Google Scholar 

  237. Agonigi, G., Ciancaleoni, G., Funaioli, T., Zacchini, S., Pineider, F., Pinzino, C., Pampaloni, G., Zanotti, V., and Marchetti, F., Inorg. Chem., 2018, vol. 57, no. 24, p. 15172. https://doi.org/10.1021/acs.inorgchem.8b02445

    CAS  Article  PubMed  Google Scholar 

  238. Agonigi, G., Bortoluzzi, M., Marchetti, F., Pampaloni, G., Zacchini, S., and Zanotti, V., Eur. J. Inorg. Chem., 2018, vol. 2018, no. 8, p. 960. https://doi.org/10.1002/ejic.201701115

    CAS  Article  Google Scholar 

  239. Andrew, R.E., Storey, C.M., and Chaplin, A.B., Dalton Trans., 2016, vol. 45, no. 21, p. 8937. https://doi.org/10.1039/C6DT01263A

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  240. Gu, S., Du, J., Huang, J., Xia, H., Yang, L., Xu, W., and Lu, C., Beilstein J. Org. Chem., 2016, vol. 12, p. 863. https://doi.org/10.3762/bjoc.12.85

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  241. Liu, Q.-X., Huo, R., Liu, J., Wei, Q., Zhao, X.-J., and Zhao, Z.-X., Organometallics, 2015, vol. 34, no. 13, p. 3167. https://doi.org/10.1021/acs.organomet.5b00188

    CAS  Article  Google Scholar 

  242. Liu, B., Ma, X., Wu, F., and Chen, W., Dalton Trans., 2015, vol. 44, no. 4, p. 1836. https://doi.org/10.1039/C4DT02986K

    CAS  Article  PubMed  Google Scholar 

  243. Munro, L.B. and Catalano, V.J., Eur. J. Inorg. Chem., 2014, vol. 2014, no. 29, p. 4994. https://doi.org/10.1002/ejic.201402483

    CAS  Article  Google Scholar 

  244. Della Pergola, R., Bruschi, M., Sironi, A.A.A., Colombo, V., and Sironi, A.A.A., Organometallics, 2014, vol. 33, no. 19, p. 5610. https://doi.org/10.1021/om500733f

    CAS  Article  Google Scholar 

  245. Santoro, O., Lazreg, F.F., Cordes, D.B., Slawin, A.M.Z., and Cazin, C.S.J., Dalton Trans., 2016, vol. 45, no. 12, p. 4970. https://doi.org/10.1039/C6DT00595K

    CAS  Article  PubMed  Google Scholar 

  246. Salman, A.W. and Haque, R.A., Eur. J. Chem., 2016, vol. 7, no. 1, p. 115. https://doi.org/10.5155/eurjchem.7.1.115-120.1387

    CAS  Article  Google Scholar 

  247. Kadyrov, R., Chem. Eur. J., 2013, vol. 19, no. 3, p. 1002. https://doi.org/10.1002/chem.201202207

    CAS  Article  PubMed  Google Scholar 

  248. Smith, P.W., Ellis, S.R., Handford, R.C., and Tilley, T.D., Organometallics, 2019, vol. 38, no. 2, p. 336. https://doi.org/10.1021/acs.organomet.8b00738

    CAS  Article  Google Scholar 

  249. Wheatley, N. and Kalck, P., Chem. Rev., 1999, vol. 99, no. 12, p. 3379. https://doi.org/10.1021/cr980325m

    CAS  Article  PubMed  Google Scholar 

  250. Bodio, E., Picquet, M., and Le Gendre, P., Top. Organomet. Chem., 2015, vol. 59, p. 139. https://doi.org/10.1007/3418_2015_161

    CAS  Article  Google Scholar 

  251. Cooper, B.G., Napoline, J.W., and Thomas, C.M., Catal. Rev., 2012, vol. 54, no. 1, p. 1. https://doi.org/10.1080/01614940.2012.619931

    CAS  Article  Google Scholar 

  252. Shibasaki, M., Kanai, M., Matsunaga, S., and Kumagai, N., Top. Organomet. Chem., 2011, vol. 37, p. 1. https://doi.org/10.1007/3418_2011_1

    CAS  Article  Google Scholar 

  253. Thomas, C.M., Comm. Inorg. Chem., 2011, vol. 32, no. 1, p. 14. https://doi.org/10.1080/02603594.2011.593213

    CAS  Article  Google Scholar 

  254. Ritleng, V. and Chetcuti, M.J., Chem. Rev., 2007, vol. 107, no. 3, p. 797. https://doi.org/10.1021/cr940270y

    CAS  Article  PubMed  Google Scholar 

  255. Goksu, H., Sert, H., Kilbas, B., Sen, F., Curr. Org. Chem., 2017, vol. 21, no. 9, p. 794. https://doi.org/10.2174/1385272820666160525123907

    CAS  Article  Google Scholar 

  256. Kadam, H.K. and Tilve, S.G., RSC Adv., 2015, vol. 5, no. 101, p. 83391. https://doi.org/10.1039/C5RA10076C

    CAS  Article  Google Scholar 

  257. Karunananda, M.K., Vázquez, F.X., Alp, E.E., Bi, W., Chattopadhyay, S., Shibata, T., and Mankad, N.P., Dalton Trans., 2014, vol. 43, no. 36, p. 13661. https://doi.org/10.1039/c4dt01841a

    CAS  Article  PubMed  Google Scholar 

  258. Karunananda, M.K. and Mankad, N.P., J. Am. Chem. Soc., 2015, vol. 137, no. 46, p. 14598. https://doi.org/10.1021/jacs.5b10357

    CAS  Article  PubMed  Google Scholar 

  259. Schmid, J., Frey, W., and Peters, R., Organometallics, 2017, vol. 36, no. 21, p. 4313. https://doi.org/10.1021/acs.organomet.7b00729

    CAS  Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 20-13-50247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Balova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, V.N., Balova, I.A. Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review). Russ J Gen Chem 91, 2194–2248 (2021). https://doi.org/10.1134/S1070363221110098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221110098

Keywords:

  • N-heterocyclic carbene complexes of Group 13 metals
  • coinage metals
  • transition metals
  • “reverse” carbene transfer
  • heterometallic complexes and clusters
  • catalysis