Skip to main content

Synthesis of Molybdenum Chelate-Bonded Fe3O4 Nanoparticles and Their Efficient Catalytic Activity in Epoxidation of Alkenes

Abstract

Immobilization of Mo(VI) ions on magnetic nanoparticles has been performed using surface modification of Fe3O4 with 2-hydroxy-5-(2-nitrophenyldiazenyl)benzaldehyde (HNPABA). The new nanomagnetic-supported organocatalyst (Fe3O4@SiO2−HNPABA−Mo(VI)) has been applied in epoxidation of olefins with tert-butyl hydroperoxide. The results indicate that Fe3O4@SiO2−HNPABA−Mo(VI) magnetic nanoparticles demonstrate excellent activity and high stability. The effect of several parameters such as a solvent, catalyst, oxidant content, and temperature has been studied. In addition, the catalyst could be repeatedly applied up to five times without loss of activity in epoxidation of alkenes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Scheme 1.

REFERENCES

  1. 1

    Yang, G., Du, H., Liu, J., Zhou, Z., Hu, X., and Zhang, Z., Green Chem., 2017, vol. 19, p. 675. https://doi.org/10.1039/C6GC02186G

    CAS  Article  Google Scholar 

  2. 2

    He, X., Chen, L., Zhou, X., and Ji, H., Catal. Commun., 2016, vol. 83, p. 78. https://doi.org/10.1016/j.catcom.2016.05.013

    CAS  Article  Google Scholar 

  3. 3

    Golmohamadpoura, A., Bahramiana, B., Shafieeb, A., and Mámanic, L., Mate. Chem. Phys., 2018, vol. 218, p. 326. https://doi.org/10.1016/j.matchemphys.2018.03.094

    CAS  Article  Google Scholar 

  4. 4

    Ishikawa, S., Maegawa, Y., Waki, M., and Inagaki, S., ACS Catal., 2018, vol. 5, p. 4160. https://doi.org/10.1021/acscatal.8b00809

    CAS  Article  Google Scholar 

  5. 5

    Masteri-Farahani, M. and Mirshekar, S., Colloids Surf., 2018, vol. 538, p. 387. https://doi.org/10.1016/j.colsurfa.2017.11.025

    CAS  Article  Google Scholar 

  6. 6

    Amini, A., Sayyahi, S., Saghanezhad, S.J., and Taheri, N., Catal. Commun., 2016, vol. 78, p. 11. https://doi.org/10.1016/j.catcom.2016.01.036

    CAS  Article  Google Scholar 

  7. 7

    Sayyahi, S., Mozafari, S., and Saghanezhad, S.J., Res. Chem. Intermed., 2016, vol. 42, p. 511. https://doi.org/10.1007/s11164-015-2037-y

  8. 8

    Gorjizadeh, M. and Sayyahi, S., Russ. J. Gen. Chem., 2018, vol. 88, p.1899. https://doi.org/10.1134/S1070363218090220

    CAS  Article  Google Scholar 

  9. 9

    Shouli, A., Menati, S., and Sayyahi, S., C. R. Chimie, 2017, vol. 20, p. 765. https://doi.org/10.1016/j.crci.2017.03.010

  10. 10

    Kakesh, N., Sayyahi, S., and Badri, R., C. R. Chimie, 2018, vol. 21, p.1023. https://doi.org/10.1016/j.crci.2018.09.009

    CAS  Article  Google Scholar 

  11. 11

    Menati, S., Azadbakht, R., and Amiri Rudbari, H., and Bruno, G., Polyhedron, 2021, vol. 205, p. 115296. https://doi.org/10.1016/j.poly.2021.115296

    CAS  Article  Google Scholar 

  12. 12

    Zhang, F., Hu, H., Zhong, H., Yan, N., and Chen, Q., Dalton Trans., 2014, vol. 43, p. 6041. https://doi.org/10.1039/C3DT53105H

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Noh, H., Cui, Y., Peters, A.W., Pahls, D.R., Ortuno, M.A., Vermeulen, N.A., Cramer, C.J., Gagliardi, L., Hupp, J.T., and Farha, O.K., J. Am. Chem. Soc., 2016, vol. 138, p. 14720. https://doi.org/10.1021/jacs.6b08898

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Golmohamadpour, A., Bahramian, B., Shafiee, A., and Ma’mani, L., Mater. Chem. Phys., 2018, vol. 218, p. 326. https://doi.org/10.1016/j.matchemphys.2018.03.094

    CAS  Article  Google Scholar 

  15. 15

    Masteri-Farahani, M. and Mirshekar, S. Colloid Surf. A, 2018, vol. 538, p. 387. https://doi.org/10.1016/j.colsurfa.2017.11.025

    CAS  Article  Google Scholar 

  16. 16

    Baskaran, T., Kumaravel, R., Christopher, J., Ajithkumar, T.G., and Sakthivel, A., New J. Chem., 2015, vol. 39, p. 3758. https://doi.org/10.1039/C4NJ02402H

    CAS  Article  Google Scholar 

  17. 17

    Shen, Y., Jiang, P., Wang, L., Bian, G., Wai, P.T., Zhang, P., and Dong, Y., Chemistry Select, 2018, vol. 3, p. 9084. https://doi.org/10.1002/slct.201801955

    CAS  Article  Google Scholar 

  18. 18

    Miao, Y., Lu, G., Liu, X., Guo, Y., Wang, Y., and Guo, Y., J. Ind. Eng. Chem., 2010, vol. 16, p. 45. https://doi.org/10.1016/j.jiec.2010.01.023

    CAS  Article  Google Scholar 

  19. 19

    Bian, G., Jiang, P., Wang, F., Shen, Y., Jiang, K., Liu, L., and Zhangand, W., New J. Chem., 2018, vol. 42, p. 85. https://doi.org/10.1039/c7nj02894f

    CAS  Article  Google Scholar 

  20. 20

    Taghiyar, H. and Yadollahi, B., Polyhedron, 2018, vol. 156, p. 98. https://doi.org/10.1016/j.poly.2018.09.015

    CAS  Article  Google Scholar 

  21. 21

    Boudjema, S., Zerrouki, M., and ChoukchouBraham, A., J. Chin. Chem. Soc., 2018, vol. 65, p. 435. https://doi.org/10.1002/jccs.201700291

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to the Khorramabad Branch, Islamic Azad University for support of this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. Menati or S. Sayyahi.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menati, S., Mohseni, E., Gorjizadeh, M. et al. Synthesis of Molybdenum Chelate-Bonded Fe3O4 Nanoparticles and Their Efficient Catalytic Activity in Epoxidation of Alkenes. Russ J Gen Chem 91, 1789–1793 (2021). https://doi.org/10.1134/S1070363221090267

Download citation

Keywords:

  • alkenes
  • epoxides
  • magnetic nanocatalyst
  • immobilization
  • molybdenyl acetylacetonate