Skip to main content

Gold Glyconanoparticles Based on Aldoses 6-Mercaptohexanoyl Hydrazones and Their Anti-Influenza Activity

Abstract

A method for the synthesis of mixed-ligand gold glyconanoparticles with average particle size of 20–25 nm at widely variable ratio of the initial glycoligands on the basis of aldoses 6-mercaptohexanoyl hydrazones—condensation products of a series of natural aldoses (N-acetylamino-D-glucose, D-mannose, D-galactose, and L-fucose) with 6-mercaptohexanoic acid hydrazide—has been developed. It has been shown that the obtained gold glyconanoparticles exhibit low toxicity and are active against influenza A/Puerto Rico/8/34 (H1N1) virus at concentrations of 3 and 6 μg/mL.

This is a preview of subscription content, access via your institution.

Scheme
Scheme
Fig. 1.

REFERENCES

  1. 1

    Lectins, Sharon, N and Lis, H., Eds., New Delhi: Thomson Press, 1989. https://doi.org/10.1007/978-94-011-4846-7

  2. 2

    Lectins. Methods and Protocols, Hirabayashi, J., Ed., Tsukuba: Humana Press, 2014. https://doi.org/10.1007/978-1-4939-1292-6

  3. 3

    Ghazarian, H., Idoni, B., and Oppenheimer, S.B., Acta Histochem., 2011, vol. 113, no. 3, p. 236. https://doi.org/10.1016/j.acthis.2010.02.004

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Nascimento, K.S., Silva, M.T.L., Oliveira, M.V., Lossio, C.F., Pinto-Junior, V.R., Osterne, V.J.S., and Cavada, B.S., Int. J. Biol. Macromol., 2020, vol. 144, p. 509. https://doi.org/10.1016/j.ijbiomac.2019.12.117

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Valverde, P., Ardá, A., Reichardt, N.-C., JiménezBarbero, J., and Gimeno, A., Med. Chem. Commun., 2019, vol. 10, p. 1678. https://doi.org/10.1039/C9MD00292H

    CAS  Article  Google Scholar 

  6. 6

    Van Breedam, W., Pöhlmann, S., Favoreel, H.W., de Groot, R.J., and Nauwynck, H.J., FEMS Microbiol. Rev., 2014, vol. 38, no. 4, p. 598. https://doi.org/10.1111/1574-6976.12052

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Glycochemical Synthesis: Strategies and Applications, Hung, S.-C. and Zulueta, M.M.L., Eds., Hoboken: John Wiley & Sons, Inc., 2016. https://doi.org/10.1002/9781119006435.ch16

  8. 8

    Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., New Jersey: John Wiley & Sons, 2011. https://doi.org/10.1002/9780470944349.ch6

  9. 9

    Yilmaz, G. and Becer, C.R., Polym. Chem., 2015, vol. 6, no. 31, p. 5503. https://doi.org/10.1039/c5py00089k

    CAS  Article  Google Scholar 

  10. 10

    Jayawardena, H.S.N., Wang, X., and Yan, M., Anal. Chem., 2013, vol. 85, no. 21, p. 10277. https://doi.org/10.1021/ac402069j

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Application of Nanotechnology in Biomedical Sciences, Sheikh, F.A., Ed., Singapore: Springer Nature Singapore Pte Ltd, 2020. https://doi.org/10.1007/978-981-15-5622-7

  12. 12

    Carbohydrate Nanotechnology, Stine, K.J., Ed., New Jersey: John Wiley & Sons, 2016. https://doi.org/10.1002/9781118860212.ch3

  13. 13

    Carbohydrate, Caliskan, M., Kavakli, I.H., and Oz, G.C., Eds., Istanbul: InTech Publisher, 2017. https://doi.org/10.5772/66194

  14. 14

    Zhang, X., Huang, G., and Huang, H., Drug Deliv., 2018, vol. 25, no. 1, p. 1840. https://doi.org/10.1080/10717544.2018.1519001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Martínez-Ávila, O., Hijazi, K., Marradi, M., Clavel, C., Campion, C., Kelly, C., and Penadés, S., Chem. Eur. J., 2009, vol. 15, no. 38, p. 9874. https://doi.org/10.1002/chem.200900923

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Van Breedam, W., Pöhlmann, S., Favoreel, H.W., de Groot, R.J., and Nauwynck, H.J., FEMS Microbiol. Rev., 2014, vol. 38, no. 4, p. 598. https://doi.org/10.1111/1574-6976.12052

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Dorokhov, Y.L., Sheshukova, E.V., Kosobokova, E.N., Shindyapina, A.V., Kosorukov, V.S., and Komarova, T.V., Biochemistry (Moscow), 2016, vol. 81, no. 8, p. 835. https://doi.org/10.1134/S0006297916080058

    CAS  Article  Google Scholar 

  18. 18

    Ershov, A.Yu., Martynenkov, A.A., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2020, vol. 90, no. 10, p. 1863. https://doi.org/10.1134/S1070363220100084

    CAS  Article  Google Scholar 

  19. 19

    von Delius, M., Geertsema, E.M., and Leigh, D.A., Nat. Chem., 2010, vol. 2, no. 2, p. 96. https://doi.org/10.1038/nchem.481

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Turkevich, J., Gold Bull., 1985, vol. 18, p. 125. https://doi.org/10.1007/BF03214694

    CAS  Article  Google Scholar 

  21. 21

    Mosmann, T., J. Immun. Methods., 1983, vol. 65, nos. 1–2, p. 55. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to А. Yu. Ershov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ershov, А.Y., Martynenkov, А.А., Lagoda, I.V. et al. Gold Glyconanoparticles Based on Aldoses 6-Mercaptohexanoyl Hydrazones and Their Anti-Influenza Activity. Russ J Gen Chem 91, 1735–1739 (2021). https://doi.org/10.1134/S1070363221090188

Download citation

Keywords:

  • thiol-containing monoses
  • gold glyconanoparticles
  • anti-influenza activity