Skip to main content
Log in

Synthesis, Structure, DFT Calculations, and In Silico Toxic Potential of Ni(II), Zn(II), and Fe(II) Complexes with a Tridentate Schiff Base

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The Schiff base ligand has been synthesized from 5-bromo-2-hydroxybenzaldehyde and ethyl 6-acetyl-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate, and complexed with Ni(II), Zn(II), and Fe(II). Elemental analysis, spectral data and calculations on the DFT/UB3LYP/LANL2DZ level of the ligand and its metal(II) complexes have supported geometric and electronic characteristics of the compounds. Interactions of the products with 16 target proteins have been simulated. Kinetics stability, binding affinities (IC50), and toxic potential (TP) of the ligand-protein complexes have been approached with the aid of molecular simulation. The ligand has been identified as a compound of low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mayer, P., Potgieter, K.C., and Gerber, T.I.A., Polyhedron, 2010, vol. 29, p. 1423. https://doi.org/10.1016/j.poly.2010.01.013

  2. Dikmen, G. and Hür, H., Chem. Phys. Lett., 2019, vol. 716, p. 49. https://doi.org/10.1016/j.cplett.2018.12.018

  3. Sayın, K., Kariper, S.E., Taştan, M., Sayın, T.A., and Karakaş, D., J. Mol. Struct., 2019, vol. 1176, p. 478. https://doi.org/10.1016/j.molstruc.2018.08.103

  4. Li, J., Ren, G., Zhang, Y., Yang, M., and Ma, H., Polyhedron, 2019, vol. 157, p. 163. https://doi.org/10.1016/j.poly.2018.09.052

  5. Çankaya, N., Tanış, E., Gülbaş, H.E., and Bulut, N., Polym. Bull., 2019, vol. 76, p. 3297. https://doi.org/10.1007/s00289-018-2543-3

  6. De Proft, F. and Geerlings, P., Chem. Rev., 2001, vol. 101, p. 1451. https://doi.org/10.1021/cr9903205

  7. Singh, R., Bhardwaj, V., Das, P., and Purohit, R., J. Biomol. Struct. Dyn., 2020, vol. 38 p. 5126. https://doi.org/10.1080/07391102.2019.1696709

  8. Bhardwaj, V.K., Singh, R., Sharma, J., Das P., and Purphit, R., Comput Meth. Prog. Bio., 2020, vol. 194, p. 105494. https://doi.org/10.1016/j.cmpb.2020.105494

  9. Bhardwaj, V.K. and Purohit, R., Genomics, 2020, vol. 112, p. 3729. https://doi.org/10.1016/j.ygeno.2020.04.023

  10. Singh, R., Bhardwaj, V.K., Sharma, J., Das P., and Purohit R., Genomics, 2021, vol. 113, p. 707. https://doi.org/10.1016/j.ygeno.2020.10.001

  11. Vedani, A. and Smiesko, M., Altern. Lab. Anim., 2009, vol. 37, p. 477. https://doi.org/10.1177/026119290903700506

  12. Vedani, A., Dobler, M., Hu, Z., and Smieško, M., Toxicol. Lett., 2015, vol. 232, p. 519. https://doi.org/10.1016/j.toxlet.2014.09.004

  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009 Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, 2009.

  14. GaussView 5.0 Gaussian Inc. Wallingford, CT, USA, 2009.

  15. http://cccbdb.nist.gov/vsfx.asp

  16. Chaudhary, N.K. and Mishra, P., J. Saudi. Chem. Soc., 2018, vol. 22, p. 601. https://doi.org/10.1016/j.jscs.2017.10.003

  17. Mohanana, K. and Devi, S.N., Russ. J. Coord. Chem., 2006, vol. 8, p. 600. https://doi.org/10.1134/S1070328406080124

  18. Shukla, S.N., Gaur, P., Raida, M.L., and Chaurasia, B., J. Mol. Struct., 2020, vol. 1202, 127362. https://doi.org/10.1016/j.molstruc.2019.127362

  19. Chang, H.Q., Jia, L., Xu, J., Wu, W.N., Zhu, T.F., Chen, R.H., Ma, T.L., Wang, Y., and Xu, Z.Q., Transit. Met. Chem., 2015, vol. 40, p. 485. https://doi.org/10.1007/s11243-015-9938-x

  20. Tas, E., Kilic, A., Durgun, M., Küpecik, L., Yilmaz, I., and Arslan, S., Spectrochim. Acta A, 2010, vol. 75, p. 811. https://doi.org/10.1016/j.saa.2009.12.002

  21. El-Shafiy, H.F., Saif, M., Mashaly, M.M., Abdel Halim, S., Eid, M.F., Nabeel, A.I., and Fouad, R., J. Mol. Struct., 2017, vol. 1147, p. 452. https://doi.org/10.1016/j.molstruc.2017.06.121

  22. Anacona, J. and Santaella, J., Spectrochim. Acta A, 2013, vol. 115, p. 800. https://doi.org/10.1016/j.saa.2013.06.107

  23. Abdel-Rahman, L.H., Ismail, N.M., Ismael, M., Abu-Dief, A.M., and Ahmed, E.A.H., J. Mol. Struct., 2017, vol. 1134, p. 851. https://doi.org/10.1016/j.molstruc.2017.01.036

  24. Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M.S.H., Kumar, V., and John, R.P., Polyhedron, 2017, vol. 134, p. 11. https://doi.org/10.1016/j.poly.2017.05.055

  25. Manjunath, M., Kulkarni, A.D., Bagihalli, G.B., Malladi, S., and Patil, S.A., J. Mol. Struct., 2017, vol. 1127, p. 314. https://doi.org/10.1016/j.molstruc.2016.07.123

  26. Uh, Y.S., Zhang, H., Vogels, C.M., Decken, A., and Westcott, S.A., Bull. Kor. Chem. Soc., 2004, vol. 25, p. 986. https://doi.org/10.5012/bkcs.2004.25.7.986

  27. Akbari, A. and Alinia, Z., Turk J. Chem., 2013, vol. 37, p. 867. https://doi.org/10.3906/kim-1207-74

  28. Mariappan, M., Suenaga, M., Mukhopadhyay, A., and Maiya, B.G., Inorg. Chim. Acta, 2012, vol. 390, p. 95. https://doi.org/10.1016/j.ica.2012.04.016

  29. Blackburn, O.A., Coe, B.J., Fielden, J., Helliwell, M., McDouall, J.J.W., and Hutchings, M.G., Inorg. Chem., 2010, vol. 49, p. 9136. https://doi.org/10.1021/ic1000842

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Turan.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, N., Tanış, E., Buldurun, K. et al. Synthesis, Structure, DFT Calculations, and In Silico Toxic Potential of Ni(II), Zn(II), and Fe(II) Complexes with a Tridentate Schiff Base. Russ J Gen Chem 91, 1572–1577 (2021). https://doi.org/10.1134/S107036322108020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322108020X

Keywords:

Navigation