Skip to main content
Log in

Phosphorylated 2-Chloroethynes in the Reactions with Malonic Acid Derivatives: Azirine or Oxazole?

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reactions of (2-chloroethynyl)diphenylphosphine oxide with diethyl 2-aminomalonate and of dimethyl (2-chloroethynyl)phosphonate with 2-amino-N1,N3-di(p-tolyl)malonamide or 2-aminomalonamide proceed chemo- and regioselectively to yield the corresponding 2-(phosphorylmethylene)oxazoles, namely diphenyl-[(4-ethoxycarbonyl-5-ethoxyoxazol-2-yl)methyl]phosphine oxide, dimethyl {[5-(p-tolylamino)-4-(p-tolylcarbamoyl)oxazol-2-yl]methyl}phosphonate, and dimethyl [(5-amino-4-carbamoyloxazol-2-yl)methyl]phosphonate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Palacios, F., Ochoa de Retana, A.M., Martinez de Marigorta, E., and de los Santos, J.M., Eur. J. Org. Chem., 2001, no. 13, p. 2401. https://doi.org/10.1002/1099-0690(200107)2001:13<2401::AID-EJOC2401>3.0.CO;2-U

    Article  Google Scholar 

  2. Khlebnikov, A.F. and Novikov, M.S., Tetrahedron, 2013, vol. 69, p. 3363. https://doi.org/10.1016/j.tet.2013.02.020

    Article  CAS  Google Scholar 

  3. Khlebnikov, A.F. and Novikov, M.S., Top. Heterocycl. Chem., 2016, vol. 41, p. 143. https://doi.org/10.1007/7081_2015_154

    Article  CAS  Google Scholar 

  4. Khlebnikov, A.F., Novikov, M.S., and Rostovskii, N.V., Tetrahedron, 2019, vol. 75, p. 2555. https://doi.org/10.1016/j.tet.2019.03.040

    Article  CAS  Google Scholar 

  5. Russel, G.A. and Yao, C.F., J. Org. Chem., 1992, vol. 57, p. 6508. https://doi.org/10.1021/jo00050a026

    Article  Google Scholar 

  6. Öhler, E. and Kanzler, S., Lieb. Ann. Chem., 1994, no. 9, p. 867. https://doi.org/10.1002/jlac.199419940904

    Article  Google Scholar 

  7. Palacios, F., Ochoa de Retana, A.M., and Gil, J.I., Tetrahedron Lett., 2000, vol. 41, no. 28, p. 5363. https://doi.org/10.1016/S0040-4039(00)00843-1

    Article  CAS  Google Scholar 

  8. Palacios, F., Aparicio, D., Ochoa de Retana, A.M., de los Santos, J.M., Gil, J.I., and Lo´pez de Munain, R., Tetrahedron: Asym., 2003, no. 14, p. 689. https://doi.org/10.1016/S0957-4166(03)00089-2

    Article  CAS  Google Scholar 

  9. Palacios, F., Ochoa de Retana, A.M., Gil, J.I., and Ezpeleta, J.M., J. Org. Chem., 2000, vol. 65, p. 3213. https://doi.org/10.1002/chem.201402514

    Article  CAS  PubMed  Google Scholar 

  10. Lemos, A., Molecules, 2009, vol. 14, p. 4098. https://doi.org/10.3390/molecules.14104098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Piquet, V., Baceiredo, A., Gornitzka, H., Dahan, F., and Bertrand, G., Chem. Eur. J., 1997, vol. 3, no. 11, p. 1757. https://doi.org/10.1002/chem.19970031106

    Article  CAS  Google Scholar 

  12. Brel, B.K., Synthesis, 2007, no. 17, p. 2674. https://doi.org/10.1055/s-2007-3837

    Article  Google Scholar 

  13. Abramovitch, R.A., Konieczny, M., Pennington, W., Kanamathareddy, S., and Vedachal, M., J. Chem. Soc. Chem. Commun., 1990, no. 3, p. 269. https://doi.org/10.1039/C39900000269

    Article  Google Scholar 

  14. Davis, F.A. and McCoull, W., Tetrahedron Lett., 1999, vol. 40, no. 2, p. 249. https://doi.org/10.1016/S0040-4039(98)02331-4

    Article  CAS  Google Scholar 

  15. Davis, F.A., Wu, Y., Yan, H., Prasad, K.R., and McCoull, W., Org. Lett., 2002, vol. 4, no. 4, p. 655. https://doi.org/10.1021/ol017289p

    Article  CAS  PubMed  Google Scholar 

  16. Skarpos, H., Vorob’eva, D.V., Osipov, S.N., Odinets, I.L., Breuer, E., and Röschenthaler, G.-V., Org. Biomol. Chem., 2006, vol. 4, p. 3669. https://doi.org/10.1039/b607060d

    Article  CAS  PubMed  Google Scholar 

  17. Lyamenkova, D.V., Viktorov, N.B., and Dogadina, A.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 2, p. 500. https://doi.org/10.1134/S1070363215020243

    Article  CAS  Google Scholar 

  18. Marsden, S.P., Steer, J.T., and Orlek, B.S., Tetrahedron, 2009, vol. 65, p. 5503. https://doi.org/10.1016/j.tet.2009.03.105

    Article  CAS  Google Scholar 

  19. Khramchikhin, V.A., Dogadina, A.V., Khramchikhin, A.V., and Ionin, B.I., Russ. J. Gen. Chem., 2012, vol. 82, no. 4, p. 776. https://doi.org/10.1134/S1070363212040299

    Article  CAS  Google Scholar 

  20. Egorova, A.V., Boyarskaya, I.A., and Dogadina, A.V., Russ. J. Gen. Chem., 2012, vol. 89, no. 4, p. 2005. https://doi.org/10.1134/S1070363219100049

    Article  Google Scholar 

  21. Egorova, A.V., Viktorov, N.B., Lyamenkova, D.V., Svintsitskaya, N.I., Garabadziu, A.I., and Dogadina, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2446. https://doi.org/10.1134/S1070363216110086

    Article  CAS  Google Scholar 

  22. Egorova, A.V., Viktorov, N.B., Starova, G.L., Svintsitskaya, N.I., Garabadziu, A.V., and Dogadina, A.V., Tetrahedron Lett., 2017, vol. 58, no. 30, p. 2997. https://doi.org/10.1016/j.tetlet.2017.06.062

    Article  CAS  Google Scholar 

  23. Egorova, A.V., Viktorov, N.B., Starova, G.L., and Dogadina, A.V., Russ. J. Gen. Chem., 2016, vol. 89, no. 9, p. 1765. https://doi.org/10.1134/S1070363219090068

    Article  Google Scholar 

  24. Petrov, A.A., Dogadina, A.V., Ionin, B.I., Garibina, V.A., and Leonov, A.A., Russ. Chem. Rev., 1983, vol. 52, no. 11, p. 1793. https://doi.org/10.1070/RC1983v052n11ABEH002913

    Article  CAS  Google Scholar 

  25. Leonov, A.A., Dogadina, A.V., Ionin, B.I., and Petrov, A.A., Zh. Obshch. Khim., 1983, vol. 53, no. 1, p. 233.

    CAS  Google Scholar 

  26. Padwa, A., Dharan, M., Smolanoff, J., and Wetmore, S.I.Jr., J. Am. Chem. Soc., 1973, vol. 95, no. 6, p. 1954. https://doi.org/10.1021/ja00787a040

    Article  CAS  Google Scholar 

  27. Padwa, A., Smolanoff, J., and Tremper, A., J. Am. Chem. Soc., 1975, vol. 97, no. 16, p. 4682. https://doi.org/10.1021/ja00849a034

    Article  CAS  Google Scholar 

  28. Padwa, A., Rasmussen, J.K., and Tremper, A., J. Am. Chem. Soc., 1976, vol. 98, no. 9, p. 2605. https://doi.org/10.1021/ja00425a033

    Article  CAS  Google Scholar 

  29. Padwa, A., Compr. Heterocycl. Chem. III, 2008, vol. 1, p. 1.

    Google Scholar 

  30. Palacios, F., Ochoa de Retana, A.M., Gil, J.I., and López de Munain, R., Org. Lett., 2002, vol. 24, no. 14, p. 2405. https://doi.org/10.1021/ol0261534

    Article  CAS  Google Scholar 

  31. Padwa, A. and Stengel, T., Tetrahedron Lett., 2004, vol. 45, no. 31, p. 5991. https://doi.org/10.1016/j.tetlet.2004.06.046

    Article  CAS  Google Scholar 

  32. Pinho e Melo, T., Lopes, C., Rocha Gonsalves, A., and Storr, R., Synthesis, 2002, no. 5, p. 605. https://doi.org/10.1055/s-2008-1083376

    Article  Google Scholar 

  33. Lopes, S., Nunes, C.M., Fausto, R., and Pinho e Melo, T.M.V.D., J. Mol. Struct., 2009, vol. 919, p. 47. https://doi.org/10.1016/j.molstruc.2008.08.014

    Article  CAS  Google Scholar 

  34. Duan, X., Yang, K., Lu, J., Kong, X., Liu, N., and Ma, J., Org. Lett., 2017, vol. 19, no. 13, p. 3370. https://doi.org/10.1021/acs.orglett.7b01305

    Article  CAS  PubMed  Google Scholar 

  35. Ning, Y., Otani, Y., and Ohwada, T., J. Org. Chem., 2017, vol. 82, no. 12, p. 6313. https://doi.org/10.1021/acs.joc.7b00904

    Article  CAS  PubMed  Google Scholar 

  36. Sauers, R.R., Hadel, L.M., Scimone, A.A., and Stevenson, T.A., J. Org. Chem., 1990, vol. 55, no. 13, p. 4011. https://doi.org/10.1021/jo00300a013

    Article  CAS  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cosłowski, J., and Fox, D.J., Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, 2009.

  38. Prosyanik A.V, Zorin, Ya.Z., and Solov’ev, E.L., Zh. Org. Khim., 1985, vol. 21, no. 7, p. 1485.

    Google Scholar 

Download references

Funding

This study was performed in the scope of the basic part of the State Task of the Ministry of Education and Science of the Russian Federation (no. 785.00.Х6019) using the equipment of the Engineering Center of St. Petersburg State Institute of Technology and Resource Centers “X-ray Diffraction Methods” and “Methods of Analysis of Composition” of Science Park of St. Petersburg State University, with financial support from Russian Foundation for Basic Research (grant no. 19-03-00365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dogadina.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 7, pp. 1059–1067 https://doi.org/10.31857/S0044460X21070106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viktorov, N.B., Gurzhiy, V.V. & Dogadina, A.V. Phosphorylated 2-Chloroethynes in the Reactions with Malonic Acid Derivatives: Azirine or Oxazole?. Russ J Gen Chem 91, 1325–1332 (2021). https://doi.org/10.1134/S1070363221070100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221070100

Keywords:

Navigation