Skip to main content
Log in

Unsymmetrical Pyridoxal-Based Bisazomethines

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of equimolar amounts of pyridoxal and 1,2-propylenediamine leads to the formation of monoimine, which exists as a cyclic imidazolidine tautomer. The latter reacts with aromatic aldehydes to form unsymmetric bisazomethines. The reaction of azomethine with phenylisocyanate produces a compound containing a carbamate group, and the reaction with hydrochloric acid leads to the formation of a salt-based furopyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Heyl, D., Luz, E., Harris, S.A., and Folkers, K., J. Am. Chem. Soc., 1948, vol. 70, p. 3669. https://doi.org/10.1021/ja01191a038

    Article  PubMed  CAS  Google Scholar 

  2. Heyl, D., Luz, E., Harris, S.A., and Folkers, K., J. Am. Chem. Soc., 1948, vol. 70, p. 3429. https://doi.org/10.1021/ja01190a061

    Article  PubMed  CAS  Google Scholar 

  3. Heyl, D., Luz, E., Harris, S.A., and Folkers, K., J. Am. Chem. Soc., 1952, vol. 74, p. 414. https://doi.org/10.1021/ja01122a038

    Article  CAS  Google Scholar 

  4. Metzler, D.E., Ikawa, M., and Snell, E.E., J. Am. Chem. Soc., 1954, vol. 76, p. 648. https://doi.org/10.1021/ja01632a004

    Article  CAS  Google Scholar 

  5. Fogle, E.J., Liu, W., Woon, S.-T., Keller, J.W., and Toney, M.D., Biochemistry, 2005, vol. 44, no. 50, p. 16392. https://doi.org/10.1021/bi051475b

    Article  PubMed  CAS  Google Scholar 

  6. Sun, S. and Toney, M.D., Biochemistry, 1999, vol. 38, no. 13, p. 4058. https://doi.org/10.1021/bi982924t

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe, A., Yosimura, T., Mikami, B., Hayashi, H., Kagamiyama, H., and Esaki, N., J. Biol. Chem., 2002, vol. 277, no. 21, p. 19166. https://doi.org/10.1074/jbc.M201615200

    Article  PubMed  CAS  Google Scholar 

  8. Major, D.T. and Gao, J., J. Am. Chem. Soc., 2006, vol. 128, no. 50, p. 16345. https://doi.org/10.1021/ja066334r

    Article  PubMed  CAS  Google Scholar 

  9. Christen, P. and Metzler, D.E., Transaminases, New York: Wiley, 1985.

  10. Hayashi, H., Mizuguch, H., Miyahara, I., Islam, M.M., Ikushiro, H., Nakajima, Y., Hirotsu, K., and Kagamiyama, H., Biochim. Biophys. Acta, 2003, vol. 1647, p. 116. https://doi.org/10.1016/S1570-9639(03)00074-8

    Article  PubMed  CAS  Google Scholar 

  11. Liu, W., Peterson, P.E., Langston, J.A., Jin, X., Zhou, X., Fisher, A.J., and Toney, M.D., Biochemistry, 2005, vol. 44, no. 8, p. 2982. https://doi.org/10.1021/bi048657a

    Article  PubMed  CAS  Google Scholar 

  12. Maurya, M.R., Bisht, M., and Avecilla, F., Indian J. Chem. (A), 2011, vol. 50, p. 1562.

    Google Scholar 

  13. Kibardina, L.K., Bagautdinova, R.H., Dobrynin, A.B., Burilov, A.R., Pudovik, M.A., Trifonov, A.V., and Pudovik, E.M., Russ. J. Gen. Chem., 2016, vol. 86, no. 3, p. 607. https://doi.org/10.1134/S1070363216030178

    Article  CAS  Google Scholar 

  14. Kolda, E., Monatsh. Chem., 1898, vol. 19, p. 609. https://doi.org/10.1007/BF01517436

    Article  Google Scholar 

  15. Bergman, E.D., Meeron, E., Hirshberg, Y., and Pinchas, S., Rec. Trav. Chim. Pays-Das., 1952, vol. 71, p. 200.

    Article  Google Scholar 

  16. Frost, A.E. and Freedman, H.H., J. Org. Chem., 1959, vol. 24, p. 1905. https://doi.org/10.1021/jo01094a021

    Article  CAS  Google Scholar 

  17. Mason, A.T., Ber., 1887, vol. 20, no. 1, p. 267.

    Article  Google Scholar 

  18. Harpham, J.A., Sinikins, J.J., and Wright, G.F., J. Am. Chem. Soc., 1950, vol. 72, p. 341. https://doi.org/10.1021/ja01157a090

    Article  CAS  Google Scholar 

  19. Zelenin, K.N. and Ukraintzev, I.V., New J. Org. Synth., 1998, vol. 30, no. 1, p. 109. https://doi.org/10.1080/00304949809355270

    Article  CAS  Google Scholar 

  20. Bagautdinova, R.Kh., Kibardina, L.K., Pudovik, M.A., and Burilov, A.R., Phosphorus, Sulfur, Silicon, Relat. Elem., 2019, vol. 194, no. 1–2, p. 134. https://doi.org/10.1080/10426507.2018.1521407

    Article  CAS  Google Scholar 

  21. Kibardina, L.K., Trifonov, A.V., Burilov, A.R., and Pudovik, M.A., Russ. J. Gen. Chem., 2018, vol. 88, no. 9, p. 1818. https://doi.org/10.1134/S1070363218090098

    Article  CAS  Google Scholar 

  22. Bagautdinova, R.K., Kibardina, L.K., Pudovik, M.A., Trifonov, A.V., Dobrynin, A.B., Pudovik, E.M., and Burilov, A.R., Russ. J. Org. Chem., 2018, vol. 54, no. 4, p. 578. https://doi.org/10.1134/S1070428018040103

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Collective Spectro-Analytical Center for Physicochemical Studies of the Structure, Properties and Composition of Substances and Materials of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” for technical support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Bagautdinova.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 7, pp. 992–997 https://doi.org/10.31857/S0044460X21070027.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagautdinova, R.H., Kibardina, L.K., Burilov, A.R. et al. Unsymmetrical Pyridoxal-Based Bisazomethines. Russ J Gen Chem 91, 1265–1270 (2021). https://doi.org/10.1134/S1070363221070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221070021

Keywords:

Navigation