Skip to main content
Log in

Use of Discrete Approaches for Simulation the Basic Processes of Chemical Technology

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The article is devoted to the use of discrete dynamic models as an alternative to classical methods for studying the basic processes of chemical technology. It is proposed models in the form of deterministic cellular automata systems are used. In this case, a continuous medium is considered as a set of interacting elements whose behavior is completely described by local functions. The basic approaches and the general methodology for creating discrete models are described. An example of cellular automata systems use for simulation of nonlinear heat transfer processes are considered, taking into account the heterogeneity of the material and the presence in the material of volumetric sources of variable power in it. The advantages and disadvantages of the proposed approach and its capabilities for studying other processes of chemical technology are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Protsessy i apparaty khimicheskoi tekhnologii (Processes and Devices of Chemical Technology), in Osnovy teorii protsessov khimicheskoi tekhnologii (Foundations of the Theory of Processes of Chemical Technology), Kutepov, A.M., Ed., Moscow: Logos, 2000, vol. 1.

  2. Malinetskii, G.G., Mitin, N.A., and Naumenko, S.A., Nanobiologiya i sinergetika. Problemy i idei. Ch. 2: Preprinty IPM im. M.V. Keldysha (Nanobiology and synergetics. Problems and ideas. Part 2: Keldysh Institute preprints M. V. Keldysh), 2005.

  3. Toffoli, T. and Margolus, N., Cellular Automata Machines: A New Environment for Modeling, Cambrige: MIT Press, 1987.

  4. Wolfram, S., A New Kind of Science, Wolfram Media inc, 2002.

  5. Bandman, O.L., Programmirovanie, 2001, no. 4, pp. 1–17.

    Google Scholar 

  6. Bobkov, S.P., Izv. Vuzov: Khim. Khim. Tekhnol., 2009, vol. 52, no. 3, pp. 109–114.

    CAS  Google Scholar 

  7. Bandman, O.L., Prikl. Diskret. Matem., 2009, no. 3, pp. 33–49.

    Article  Google Scholar 

  8. Wolfram, S., Rev. Modern Phys., 1983, vol. 5, pp. 601–610.

    Article  Google Scholar 

  9. Malinetskii, G.G., Potapov, A.B., and Podlazov, A.V., Nelineinaya dinamika: Podkhody, rezul’taty, nadezhdy (Non-Linear Dynamics: Approaches, Results, Hopes), Moscow: Ozon, 2016.

  10. Buslenko, N.P., Modelirovanie slozhnykh sistem (Modeling Complex Systems), Moscow: Nauka, 1978.

  11. Bandman, O.L., Sistemnaya informatika: Sb. nauch. tr. (Systems Informatics: Coll. Sci.), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2006, no. 10, pp. 59–111.

  12. Bobkov, S.P., in Modelirovanie, raschet i optimizatsiya teplomassoobmennykh protsessov v tekstil’noi promyshlennosti: monografiya (Modeling, Calculation and Optimization of Heat and Mass Transfer Processes in the Textile Industry: Monograph), Ivanovo: Ivanov. Gos. Khim.-Tekhnol. Univ., 2010, pp. 180–200.

  13. Bobkov, S.P. and Chernyavskaya, A.S., Vestn. Ivanov. Gos. Energ. Univ., 2018, no. 3, pp. 64–70.

    Google Scholar 

  14. Kurdyumov, S.P., Malinetskii, G.G., Potapov, A.B., and Samarskii, A.A., Struktury v nelineinykh sredakh. Komp’yutery i nelineinye yavleniya (Structures in Nonlinear Media. Computers and Nonlinear Phenomena), Moscow: Nauka, 1988, pp. 5–43.

  15. Chernyavskaya, A.S. and Bobkov, S.P., Vestn. Ivanov. Gos. Energ. Univ., 2014, no. 4, pp. 53–57.

    Google Scholar 

  16. Chernyavskaya, A.S. and Bobkov, S.P., Izv. Vuzov: Khim. Khim. Tekhnol., 2018, vol. 61, no. 2, pp. 86–90.

    CAS  Google Scholar 

  17. Wolf-Gladrow, D., Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Berlin: Springer, 2004.

  18. Chernyavskaya, A.S. and Bobkov, S.P., Izv. Vuzov: Khim. Khim. Tekhnol., 2013, vol. 56, no. 3, pp. 92–95

    Google Scholar 

  19. Bobkov, S.P. and Sokolov, V.L., Izv. Vuzov: Khim. Khim. Tekhnol., 2017, vol. 60, no. 2, pp. 79–84.

    CAS  Google Scholar 

  20. Bobkov, S.P. and Chernyavskaya, A.S., Vestn. Ivanov. Gos. Energ. Univ., 2019, no. 3, pp. 68–75.

    Google Scholar 

  21. Bobkov, S.P., Chernyavskaya, A.S., and Shergin, V.V., Model. Anal. Inform. Sistem, 2019. 26(2), pp. 256–266.

  22. Bobkov, S.P. and Smirnov, S.S., Izv. Vuzov: Khim. Khim. Tekhnol., 2010, vol. 53, no. 8, pp. 100–102.

    CAS  Google Scholar 

  23. Polishhuk, I.V. and Bobkov, S.P., Vestn. Ivanov. Gos. Energ. Univ., 2014, no. 6, pp. 71–74.

    Google Scholar 

  24. Bobkov, S.P. and Polishhuk, I.V., Izv. Vuzov: Khim. Khim. Tekhnol., 2015, vol. 58, no. 4, pp. 72–75.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Bobkov.

Ethics declarations

No conflict of interest was declared by the author.

Additional information

Translated from Rossiiskii Khimicheskii Zhurnal, 2019, Vol. 63, Nos. 3–4, pp. 22–30 https://doi.org/10.6060/rcj.2019633.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, S.P. Use of Discrete Approaches for Simulation the Basic Processes of Chemical Technology. Russ J Gen Chem 91, 1190–1197 (2021). https://doi.org/10.1134/S1070363221060311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221060311

Keywords:

Navigation