Skip to main content
Log in

Highly Selective Schiff-Base Fluorescent Probe for Rare Earth Ion Lu3+

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A novel Schiff base fluorescent probe for rare earth ion Lu3+ is reported. Emission intensity of the probe is intrinsically non-fluorescent, which is due to isomerization of the C=N bond in the excited-state proton transfer (ESPT) of phenolic protons of the salicylic amide moiety. In the presence of Lu3+, fluorescence intensifies significantly due to inhibition of the C=N isomerization and ESPT. The Schiff base is characterized by high sensitivity and selectivity towards Lu3+. The fluorescence turn-on mechanism of Lu[L]2 system is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhu, X., Gong, A., and Yu, S., Spectrochim. Acta (A), 2008, vol. 69, no. 2, p. 478. https://doi.org/10.1016/j.saa.2007.04.026

    Article  CAS  Google Scholar 

  2. Wang, X. and Li, Y., Chemistry (Weinheim an der Bergstrasse, Germany), 2003, vol. 9, p. 5627. https://doi.org/10.1002/chem.200304785

    Article  CAS  Google Scholar 

  3. Cai, J. and Sessler, J., Chem. Soc. Rev., 2014, vol. 43. https://doi.org/10.1039/c4cs00115j

  4. Evans, N. and Beer, P., Ang. Chem. Int. Ed., 2014, vol. 53. https://doi.org/10.1002/anie.201309937

  5. Busschaert, N., Caltagirone, C., Van Rossom, W., and Gale, P., Chem. Rev., 2015, vol. 115. https://doi.org/10.1021/acs.chemrev.5b00099

  6. Yuan, L., Lin, W., Zheng, K., and Zhu, S., Account. Chem. Res., 2013, vol. 46. https://doi.org/10.1021/ar300273v

  7. Zhang, J., Xing, B., Song, J., Zhang, F., Nie, C., Jiao, L., Liu, L., and Lv, F., Analyt. Chem., 2013, vol. 86. https://doi.org/10.1021/ac402720g

  8. Gui, S., Huang, Y., Hu, F., Jin, Y., Zhang, G., Yan, L., Zhang, D.-Q., and Zhao, R., Analyt. Chem., 2015, vol. 87. https://doi.org/10.1021/ac504153c

  9. Xia, W.-S., Schmehl, R.H., and Li, C.-J., Tetrahedron, 2000, vol. 56, no. 36, p. 7045. https://doi.org/10.1016/S0040-4020(00)00528-7

    Article  CAS  Google Scholar 

  10. Liu, J.-M., Chen, C.-F., Zheng, Q.-Y., and Huang, Z.-T., Tetrahedron Lett., 2004, vol. 45, no. 31, p. 6071. https://doi.org/10.1016/j.tetlet.2004.05.159

    Article  CAS  Google Scholar 

  11. Zhang, D., Zang, Z., Zhou, X., Zhou, Y., Tang, X., Wei, R., and Liu, W., Inorg. Chem. Commun., 2009, vol. 12, no. 11, p. 1154. https://doi.org/10.1016/j.in-oche.2009.08.007

    Article  CAS  Google Scholar 

  12. Jiménez Sánchez, A., Farfán, N., and Santillan, R., J. Phys. Chem. C, 2015, vol. 119, p. 13814. https://doi.org/10.1021/acs.jpcc.5b02884

    Article  CAS  Google Scholar 

  13. Bazzicalupi, C., Bencini, A., Biagini, S., Faggi, E., Farruggia, G., Andreani, G., Gratteri, P., Prodi, L., Spepi, A., and Valtancoli, B., Dalton Trans, 2010, vol. 39, p. 7080. https://doi.org/10.1039/c0dt00126k

    Article  CAS  PubMed  Google Scholar 

  14. Li, D., Chen, S., Bellomo, E., Tarasov, A., Kaut, C., Rutter, G., and Li, W.-h., Proc. Nat. Acad. Sci. USA, 2011, vol. 108, p. 21063. https://doi.org/10.1073/pnas.1109773109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salmon, L., Thuery, P., Rivière, E., and Ephritikhine, M., Inorg. Chem., 2006, vol. 45, p. 83. https://doi.org/10.1021/ic0512375

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Qin, W., and Liu, W., Analyt. Methods, 2014, vol. 6, no. 4, p. 1167. https://doi.org/10.1039/c3ay41691g

    Article  CAS  Google Scholar 

  17. Paul, M., Singh, Y., Dey, A., Saha, S., Anwar, S., and Chattopadhyay, A., Liq. Crystals, 2015, p. 1. https://doi.org/10.1080/02678292.2015.1108467

  18. Zhang, J., Xu, L., and Wong, W.-Y., Coord. Chem. Rev., 2018, vol. 355, p. 180. https://doi.org/10.1016/j.ccr.2017.08.007

    Article  CAS  Google Scholar 

  19. Amimoto, K. and Kawato, T., J. Photochem. Photobiol., 2005, vol. 6, no. 4, p. 207. https://doi.org/10.1016/j.jphot-ochemrev.2005.12.002

    Article  CAS  Google Scholar 

  20. Dalapati, S., Jana, S., and Guchhait, N., Spectrochim. Acta (A), 2014, vol. 129, p. 499. https://doi.org/10.1016/j.saa.2014.03.090

    Article  CAS  Google Scholar 

  21. Yuan, W.F., Sun, L., Tang, H.H., Wen, Y., Jiang, G., Huang, W., Jiang, L., Song, Y., Tian, H., and Zhu, D.B., Adv. Mater., 2005, vol. 17, p. 156. https://doi.org/10.1002/adma.200400953

    Article  CAS  Google Scholar 

  22. Yanez, C.O., Andrade, C.D., Yao, S., Luchita, G., Bondar, M.V., and Belfield, K.D., ACS Appl. Mater. Interfaces, 2009, vol. 1, no. 10, p. 2219. https://doi.org/10.1021/am900587u

    Article  CAS  PubMed  Google Scholar 

  23. Staykov, A., Watanabe, M., Ishihara, T., and Yoshizawa, K., J. Phys. Chem. C, 2014, vol. 118, no. 47, p. 27539. https://doi.org/10.1021/jp5081884

    Article  CAS  Google Scholar 

  24. Zhang, X., Guo, L., Wu, F.-Y., and Jiang, Y.-B., Org. Lett., 2003, vol. 5, p. 2667. https://doi.org/10.1021/ol034846u

    Article  CAS  PubMed  Google Scholar 

  25. Peng, X., Tang, X., Qin, W., Dou, W., Guo, Y., Zhang, J.-R., Liu, W., and Wang, D., Dalton Trans., 2011, vol. 40, p. 5271. https://doi.org/10.1039/c0dt01590c

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L., Qin, W., Tang, X., Dou, W., and Liu, W., J. Phys. Chem. A, 2011, vol. 115, no. 9, p. 1609. https://doi.org/10.1021/jp110305k

    Article  CAS  PubMed  Google Scholar 

  27. Ganguly, B. and Nath, R., J. Surf. Interfac. Mater., 2013, vol. 1. https://doi.org/10.1166/jsim.2013.1004

  28. Kursunlu, A., RSC Adv., 2015, vol. 5, p. 41025. https://doi.org/10.1039/C5RA03342J

    Article  CAS  Google Scholar 

  29. Liu, J.M., Chen, C.F., Zheng, Q.-Y., and Huang, Z.T., Tetrahedron Lett., 2004, vol. 45, no. 31, p. 6071

    Article  CAS  Google Scholar 

  30. Cametti, M., Dalla Cort, A., Colapietro, M., Portalone, G., Russo, L., and Rissanen, K., Inorg. Chem., 2007, vol. 46, p. 9057. https://doi.org/10.1021/ic701521s

    Article  CAS  PubMed  Google Scholar 

  31. Othman, A.B., Lee, J.W., Huh, Y.-D., Abidi, R., Kim, J.S., and Vicens, J., Tetrahedron, 2007, vol. 63, no. 44, p. 10793. https://doi.org/10.1016/j.tet.2007.06.120

    Article  CAS  Google Scholar 

  32. Cao, X., Wang, Y., Mo, Y., Wu, L., and Mo, W., Rapid Commun. Mass Spectr., 2016, vol. 30, p. 1454. https://doi.org/10.1002/rcm.7579

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21501106), the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Qingdao Municipal Science and Technology Commission (16-5-1-86-jch, 19-6-2-73-cg), Chemistry Faculty Talents Foundation of Qingdao University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Wang or Manhong Liu.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Peng, X., Xu, F. et al. Highly Selective Schiff-Base Fluorescent Probe for Rare Earth Ion Lu3+. Russ J Gen Chem 91, 1093–1098 (2021). https://doi.org/10.1134/S1070363221060165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221060165

Keywords:

Navigation