Skip to main content
Log in

Chemically Modified Silica in Sorption-Instrumental Analytical Methods

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review briefly discusses the basic data on the preparation of porous silicas containing surface covalently bound organic ligands which specifically interact with analyte molecules. Single-stage (immobilization of the modifier) and two-stage (assembly on the surface) methods of their synthesis are consistently discussed. The data on the use of such sorbents as collectors of inorganic, organic, and biologically active substances are presented. Numerous examples of the use of such materials in sorption-instrumental analytical methods are demonstrated, and it is shown that this class of sorbents is the most preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Osnovy analiticheskoi khimii (Fundamentals of Analytical Chemistry), Zolotov, Yu.A., Ed., Moscow: Akademiya, 2012, vol. 1.

  2. Kuz’min, N.M. and Zolotov, Yu.A. Kontsentrirovanie sledov elementov (Concentration of Trace Elements), Moscow: Nauka, 1988.

  3. Myasoedova, G.V. and Savvin, S.B., Khelatoobrazuyushhie sorbenty (Chelating Sorbents), Moscow: Nauka, 1984.

  4. Dmitrienko, S.G. and Apyari, V.V., Penopoliuretany: sorbtsionnye svoistva i primenenie v khimicheskom analize (Polyurethane Foams: Sorption Properties and Application in Chemical Analysis), Moscow: Krasand, 2010.

  5. Olenin, A.Yu., J. Anal. Chem., 2019, vol. 74, no. 4, p. 355. https://doi.org/10.1134/S1061934819040099

    Article  CAS  Google Scholar 

  6. Olenin, A.Yu. and Lisichkin, G.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 9, p. 1393. https://doi.org/10.1134/S107042721809001X

    Article  CAS  Google Scholar 

  7. Kulakova, I.I. and Lisichkin, G.V., Russ. J. Gen. Chem., 2020, vol. 90, no. 10, p. 1921. https://doi.org/10.1134/S1070363220100151

    Article  CAS  Google Scholar 

  8. Basova, T.V. and Polyakov, M.S., Makrogeterotsikly, 2020, vol. 13, no. 2, p. 91. https://doi.org/10.6060/mhc200710b

    Article  CAS  Google Scholar 

  9. Dolmatov, V.Yu., Ozerin, A.N., Kulakova, I.I., Bochechka, O.O., Lapchuk, N.M., Myllymäki, V., and Vehanen, A., Russ. Chem. Rev., 2020, vol. 89, no. 12, p. 1428. https://doi.org/10.1070/RCR4924

    Article  CAS  Google Scholar 

  10. Yakovlev, R.Yu., Solomatin, A.S., Leonidov, N.B., Kulakova, I.I., and Lisichkin, G.V., Ross. Khim. Zh., 2012, vol. 56, nos. 3–4, p. 114.

    CAS  Google Scholar 

  11. Zakharova, N.V., Akkuleva, K.T., Antipov, V.V., Malygin, A.A., Mokrushin, A.S., Simonenko, N.P., Simonenko, E.P., Sevast’yanov, V.G., and Kuznetsov, N.T., Coll. of Papers, II Vseros. kongres po sensornomu priborostroeniyu (II All.-Russian Congr. on Sensor Engineering), St. Petersburg, 2017, p. 25.

  12. https://www.biochemmack.ru

  13. Khimicheski modifitsirovannyye kremnezemy v sorbtsii, katalize i khromatografii (Chemically Modified Silicas in Sorption, Catalysis and Chromatography), Lisichkin, G.V., Ed., Moscow: Khimiya, 1986.

  14. Khimiya privitykh poverkhnostnykh soyedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.

  15. https://www.sikemia.com

  16. Çimen, A., Bilgiç, A., and Yılmaz, İ., Desalin. Water Treat., 2015, vol. 55, no. 2, p. 420. https://doi.org/10.1080/19443994.2014.923336

    Article  CAS  Google Scholar 

  17. Çimen, A., Karakuş, E., and Bilgiç, A., Desalin. Water Treat., 2016, vol. 57, no. 16, p. 7219. https://doi.org/10.1080/19443994.2015.1014854

    Article  CAS  Google Scholar 

  18. Gañán, J., Morante-Zarcero, S., Perez-Quintanilla, D., and Sierra, I., Microchem. J., 2020, vol. 157, article 104877. https://doi.org/10.1016/j.microc.2020.104877

  19. da Silveira, T.F.S., Silvestrini Fernandes, D., Barbosa, P.F.P., and do Carmo, D.R., Silicon, 2018, vol. 10, no. 2, p. 635. https://doi.org/10.1007/s12633-016-9506-9

    Article  CAS  Google Scholar 

  20. Radi, S., El Abiad, C., Moura, N.M.M., Faustino, M.A.F., and Neves, M.G.P.M.S., J. Hazard. Mater., 2019, vol. 370, p. 80. https://doi.org/10.1016/j.jhazmat.2017.10.058

    Article  CAS  PubMed  Google Scholar 

  21. Muthusami, R., Kesavan, A., Ramachandran, V., Vasudevan, V., Kostova, I., and Rangappan, R., Micropor. Mesopor. Mater., 2020, vol. 294, article 109910. https://doi.org/10.1016/j.micromeso.2019.109910

  22. Armaghan, M., Amini, M.M., Khavasi, H.R., Zhang, W.-H., and Ng, S.W., RSC Adv., 2016, vol. 6, no. 88, p. 85381. https://doi.org/10.1039/c6ra17453a

    Article  CAS  Google Scholar 

  23. Xie, F., Lin, X., Wu, X., and Xie, Z., Talanta, 2008, vol. 74, no. 4, p. 836. https://doi.org/10.1016/j.talanta.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  24. Losev, V.N., Elsuf’ev, E.V., Trofimchuk, A.K., and Legenchuk, A.V., J. Anal. Chem., 2012, vol. 67, no. 9, p. 772. https://doi.org/10.1134/S1061934812090067

    Article  CAS  Google Scholar 

  25. Losev, V.N., Parfenova, V.V., Elsuf’ev, E.V., Borodina, E.V., Metelitsa, S.I., and Trofimchuk, A.K., Sep. Sci. Technol., 2020, vol. 55, no. 15, p. 2659. https://doi.org/10.1080/01496395.2019.1655454

    Article  CAS  Google Scholar 

  26. Narula, P., Ruchi, Mutneja., Singh, R., and Kaur, V., Appl. Organomet. Chem., 2016, vol. 30, no. 10, p. 852. https://doi.org/10.1002/aoc.3513

    Article  CAS  Google Scholar 

  27. Zhu, L., Sun, Y., Song, L., Shi, X., Chen, S.-W., and Wu, W., J. Radioanal. Nucl. Chem., 2016, vol. 310, no. 1, p. 125. https://doi.org/10.1007/s10967-016-4779-4

    Article  CAS  Google Scholar 

  28. Chen, M., Cui, J., Wang, Y., Wang, C., Li, Y., Fan, C., Tian, M., Xu, M., and Yang, W., Fuel, 2020, vol. 266, article 116960. https://doi.org/10.1016/j.fuel.2019.116960

  29. Konshina, D.N., Furina, A.V., Temerdashev, Z.A., Gurinov, A.A., and Konshin, V.V., Anal. Lett., 2014, vol. 47, no. 16, p. 2665. https://doi.org/10.1080/00032719.2014.917421

    Article  CAS  Google Scholar 

  30. Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.-K., Chai, Y.G., Kim, S.H., Ryu, J.-Y., and Kim, H.T., Appl. Surf. Sci., 2011, vol. 257, p. 6963. https://doi.org/10.1016/j.apsusc.2011.03.041

    Article  CAS  Google Scholar 

  31. Montazeri, M., Razzaghi-Abyaneh, M., Nasrollahi, S.A., and Nafisi, H.M.S., Bull. Mater. Sci., 2020, vol. 43, no. 1, article 13. https://doi.org/10.1007/s12034-019-1974-2

  32. Li, J., Gong, A., Qiu, L., Zhang, W., Shi, G., Li, X., Li, J., Gao, G., and Bai, Y., J. Chrom. (A), 2020, vol. 1627, article 461393. https://doi.org/10.1016/j.chroma.2020.461393

  33. Suhail, F., Batool, M., Din, M.I., Khan, M.A., Chotana, G.A., Zubair, I., and Shah, A.T., J. Por. Mater., 2020, vol. 27, no. 5, p. 1491. https://doi.org/10.1007/s10934-020-00919-8

    Article  CAS  Google Scholar 

  34. Chen, S., Zi, F., Hu, X., Chen, Y., Yang, P., Wang, Q., Qin, X., Cheng, H., Liu, Y., He, Y., Wang, C., Hu, D., Liu, Y., and Zhang, Y., Chem. Eng. J., 2020, vol. 393, article 124547. https://doi.org/10.1016/j.cej.2020.124547

  35. Yin, W., Liu, L., Zhang, H., Tang, S., and Chi, R., J. Clean. Prod., 2020, vol. 243, article 118688. https://doi.org/10.1016/j.jclepro.2019.118688

  36. Fadeeva, V.I., Tikhomirova, T.I., Yuferova, I.B., and Kudryavtsev, G.V., Anal. Chim. Acta, 1989, vol. 219, p. 201. https://doi.org/10.1016/S0003-2670(00)80351-7

    Article  CAS  Google Scholar 

  37. Yismaw, S., Ebbinghaus, S.G., Wenzel, M., Poppitz, D., Gläser, R., Matysik, J., Bauer, F., and Enke, D., J. Nanopart. Res., 2020, vol. 22, no. 9, article 279. https://doi.org/10.1007/s11051-020-05006-2

  38. Radi, S., Attayibat, A., Lekchiri, Y., Ramdani, A., and Bacquet, M., Mater. Chem. Phys., 2008, vol. 111, nos. 2–3, p. 296. https://doi.org/10.1016/j.matchemphys.2008.04.011

    Article  CAS  Google Scholar 

  39. Radi, S. and Attayibat, A., Phosphorus, Sulfur, Silicon, Relat. Elem., 2003, vol. 185, no. 10, p. 2003. https://doi.org/10.1080/10426500903440042

    Article  CAS  Google Scholar 

  40. Wang, N., Liang, X., Li, Q., Liao, Y., and Shao, S., RSC Adv., 2015, vol. 5, no. 20, p. 15500. https://doi.org/10.1039/c4ra13861a

    Article  CAS  Google Scholar 

  41. Rosen, J.E. and Gu, F.X., Langmuir, 2011, vol. 27, no. 17, p. 10507. https://doi.org/10.1021/la201940r

    Article  CAS  PubMed  Google Scholar 

  42. Dasthaiah, K., Selvan, B.R., Suneesh, A.S., Venkatesan, K.A., Antony, M.P., and Gardas, R.L., J. Radioanal. Nucl. Chem., 2017, vol. 313, no. 3, p. 515. https://doi.org/10.1007/s10967-017-5314-y

    Article  CAS  Google Scholar 

  43. Losev, V.N., Metelitsa, S.I., Elsuf’ev, E.V., and Trofimchuk, A.K., J. Anal. Chem., 2009, vol. 64, no. 9, p. 903. https://doi.org/10.1134/S1061934809090056

    Article  CAS  Google Scholar 

  44. Losev, V.N., Parfenova, V.V., Elsuf’ev, E.V., and Trofimchuk, A.K., J. Anal. Chem., 2015, vol. 70, no. 7, p. 781. https://doi.org/10.1134/S1061934815070072

    Article  CAS  Google Scholar 

  45. Losev, V.N., Parfenova, V.V., Elsuf’ev, E.V., Buiko, O.V., Didukh, S.L., Belousov, O.V., and Maksimov, N.G., J. Anal. Chem., 2018, vol. 73, no. 4, p. 325. https://doi.org/10.1134/S106193481804007X

    Article  CAS  Google Scholar 

  46. Rafiee, M., Karimi, B., Farrokhzadeh, S., and Vali, H., Electrochim. Acta, 2013, vol. 94, p. 198. https://doi.org/10.1016/j.electacta.2013.01.147

    Article  CAS  Google Scholar 

  47. Darwish, G.H., Asselin, J., Tran, M.V., Gupta, R., Kim, H., Boudreau, D., and Russ, W., ACS Appl. Mater. Interfaces, 2020, vol. 12 , no. 30, p. 33530. https://doi.org/10.1021/acsami.0c09553

    Article  CAS  PubMed  Google Scholar 

  48. Khanna, L., Verma, N.K., and Tripathi, S.K., J. Alloys Compd., 2018, vol. 752, p. 332. https://doi.org/10.1016/j.jallcom.2018.04.093

    Article  CAS  Google Scholar 

  49. Minamijima, N., Furuta, N., Wakunami, S., Mizutani, T., Bull. Chem. Soc. Japan., 2011, vol. 84, no. 7, p. 794. https://doi.org/10.1246/bcsj.20100317

  50. Tomina, V.V., Stolyarchuk, N.V., Katelnikovas, A., Misevicius, M., Kanuchova, M., Kareiva, A., Beganskienė, A., and Melnyk, I.V., Coll. Surf. (A), 2021, vol. 608, article 125552. https://doi.org/10.1016/j.colsurfa.2020.125552

  51. Volchkova, E.V., Boryagina, I.V., Buslaeva, T.M., Ablizov, A.A., Bodnar, N.M., and Ehrlich, H.V., Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 5, p. 405. https://doi.org/10.3103/S1067821216050175

    Article  Google Scholar 

  52. Jang E.-H., Pack, S.P., Kim, I., and Chung, S., Sci. Rep., 2020, vol. 10, no. 1, article 5558. https://doi.org/10.1038/s41598-020-61505-1

  53. Yanovskaya, E.S., Karmanov, V.I., and Slobodyanik, N.S., J. Analyt. Chem., 2007, vol. 62, no. 6, p. 549. https://doi.org/10.1134/S1061934807060093

    Article  CAS  Google Scholar 

  54. Guo, B., Deng, F., Zhao, Y., Luo, X., Luo, S., and Au, C., Appl. Surf. Sci., 2014, vol. 292, p. 438. https://doi.org/10.1016/j.apsusc.2013.11.156

    Article  CAS  Google Scholar 

  55. Losev, V.N., Bakhvalov, I.P., Kudrin, Yu.V., and Trofimchuk, A.K., J. Analyt. Chem., 2004, vol. 59, no. 8, p. 708. https://doi.org/10.1023/B:JANC.0000037272.46701.54

    Article  CAS  Google Scholar 

  56. Leśniewska, B., Arciszewska, Ż., Wawrzyńczak, A., Jarmolińska, S., Nwak, I., and Godlewska-Żyłkiewicz, B., Talanta, 2020, vol. 217, article 121004. https://doi.org/10.1016/j.talanta.2020.121004

  57. Losev, V.N., Buiko, E.V., Elsuf’ev, E.V., Maznyak, N.V., and Trofimchuk, A.K., Russ. J. Inorg. Chem., 2006, vol. 51, no. 4, p. 565 https://doi.org/10.1134/S0036023606040103

    Article  Google Scholar 

  58. Zare-Dorabei, R., Darbandsari, M.S., Moghimi, A., Tehrani, M.S., and Nazerdeylami, S., RSC Adv., 2016, vol. 6, no. 110, p. 108477. https://doi.org/10.1039/c6ra21895d

    Article  CAS  Google Scholar 

  59. Khalifa, M.E., Abdelrahman, E.A., Hassanien, M.M., and Ibrahim, W.A., J. Inorg. Organomet. Polym. Mater., 2020, vol. 30, no. 6, p. 2182. https://doi.org/10.1007/s10904-019-01384-w

    Article  CAS  Google Scholar 

  60. Amesh, P., Suneesh, A.S., Venkatesan, K.A., Chandra, M., and Ravindranath, N.A., Coll. Surf. (A), 2020, vol. 602, article 125053. https://doi.org/10.1016/j.colsurfa.2020.125053

  61. Liu, Y., Li, H.F., Zhang, J.H., Maeda, T., and Lin, J.M., Chin. Chem. Lett., 2010, vol. 21, no. 6, p. 730. https://doi.org/10.1016/j.cclet.2009.12.024

    Article  CAS  Google Scholar 

  62. Martinez, E., Gros, M., Lacorte, S., and Barceló, D., J. Chromatogr. (A), 2004, vol. 1047, no. 2, p. 181. https://doi.org/10.1016/j.chroma.2004.07.003

    Article  CAS  Google Scholar 

  63. Ncube, S., Madikizela, L., Cukrowska, E., and Chimuka, L., Trends Anal. Chem., 2018, vol. 99, p. 101. https://doi.org/10.1016/j.trac.2017.12.007

    Article  CAS  Google Scholar 

  64. Goncharova, L.A., Kobylinska, N.G., Díaz-Garcia, M.E., and Zaitsev, V.N., J. Analyt. Chem., 2017, vol. 72, no. 7, p. 724. https://doi.org/10.1134/S106193481707005X

    Article  CAS  Google Scholar 

  65. Lu, D., Xu, S., Qiu, W., Sun, Y., Liu, X., Yang, J., and Ma, J., J. Clean. Prod., 2020, vol. 264, article 121644. https://doi.org/10.1016/j.jclepro.2020.121644

  66. Chen, G. and Du, Y., J. Agricult. Food Chem., 2011, vol. 59, no. 4, p. 1058. https://doi.org/10.1021/jf1038184

    Article  CAS  Google Scholar 

  67. Sivaguru, J., Selvaraj, M., Ravi, S., Park, H., Song, C.W., Chun, H.H., and Ha, C.-S., J. Nanosci. Nanotechnol., 2015, vol. 15, no. 7, p. 4784. https://doi.org/10.1166/jnn.2015.9811

    Article  CAS  PubMed  Google Scholar 

  68. Carvalho, A.M., Cordeiro, R.A., and Faneca, H., Pharmaceutics, 2020, vol. 12, no. 7, article 649. https://doi.org/10.3390/pharmaceutics12070649

  69. Huang, R., Shen, Y.-W., Guan, Y.-Y., Jiang, Y.-X., Wu, Y., Rahman, K., Zhang, L.-J., Liu, H.-J., and Luan, X., Acta Biomater., 2020, vol. 116, p. 1. https://doi.org/10.1016/j.actbio.2020.09.009

    Article  CAS  PubMed  Google Scholar 

  70. Gubala, V., Giovannini, G., Kunc, F., Monopoli, M.P., and Moore, C.J., Cancer Nanotechnol., 2020, vol. 11, no. 1, article 1. https://doi.org/10.1186/s12645-019-0056-x

  71. Smith, J.E., Wang, L., and Tan, W., Trends Anal. Chem., 2006, vol. 25, no. 9, p. 848. https://doi.org/10.1016/j.trac.2006.03.008

    Article  CAS  Google Scholar 

  72. Brezániová, I., Záruba, K., Králová, J., Sinica, A., Adámková, H., Ulbrich, P., Poučková, P., Hrubý, M., Štěpánek, P., and Král, V., Photodiagn. Photodyn. Ther., 2018, vol. 21, p. 275. https://doi.org/10.1016/j.pdpdt.2017.12.014

    Article  CAS  Google Scholar 

  73. Zhang, S., Lu, F., Ma, X., Yue, M., Li, Y., Liu, J., and You, J., J. Chromatogr. (A), 2018, vol. 1557, p. 1. https://doi.org/10.1016/j.chroma.2018.05.011

    Article  CAS  Google Scholar 

  74. Cai, Y., Deng, T., Pan, Y., and Zink, J.I., Adv. Funct. Mater., 2020, vol. 30, no. 39, article 2002043. https://doi.org/10.1002/adfm.202002043

  75. Chi, L., Xu, C., Li, S., Wang, X., Tang, D., and Xue, F., Anal. Chim. Acta, 2020, vol. 1136, p. 91. https://doi.org/10.1016/j.aca.2020.08.029

    Article  CAS  PubMed  Google Scholar 

  76. Peng, Y., Fu, D., Zhang, F., Yang, B., Yu, L., and Liang, X., J. Chromatogr. (A), 2016, vol. 1460, p. 197. https://doi.org/10.1016/j.chroma.2016.07.028

    Article  CAS  Google Scholar 

  77. Fu, D., Liu, Y., Shen, A., Xiao, Y., Yu, L., and Liang, X., Anal. Bioanal. Chem., 2019, vol. 411, no. 18, p. 4131. https://doi.org/10.1007/s00216-019-01661-0

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, F., Hou, T., Wang, J., Jiang, Y., Huang, S., Wang, Q., Xian, M., and Mu, X., Bioproc. Biosyst. Eng., 2017, vol. 40, no. 1, p. 1. https://doi.org/10.1007/s00449-016-1669-7

    Article  CAS  Google Scholar 

  79. Niu, B., Zhou, Y., Wen, T., Quan, G., Singh, V., Pan, X., and Wu, C., Coll. Surf. (A), 2018, vol. 548, p. 98. https://doi.org/10.1016/j.colsurfa.2018.03.035

    Article  CAS  Google Scholar 

  80. Didukh-Shadrina, S.L., Losev, V.N., Maznyak, N.V., and Trofimchuk, A.K., J. Analyt. Chem., 2019, vol. 74, no, p. 738. https://doi.org/10.1134/S1061934819080069

    Article  CAS  Google Scholar 

  81. Losev, V.N., Borodina, E.V., Buiko, O.V., Maznyak, N.V., and Trofimchuk, A.K., J. Analyt. Chem., 2014, vol. 69, no. 5, p. 413. https://doi.org/10.1134/S1061934814030101

    Article  CAS  Google Scholar 

  82. Losev, V.N., Buiko, O.V., Borodina, E.V., and Trofimchuk, A.K., J. Analyt. Chem., 2015, vol. 70, no. 4, p. 431 https://doi.org/10.1134/S1061934815040085

    Article  CAS  Google Scholar 

  83. Das, T., Roy, A., Uyama, H., Roy, P., and Nandi, M., Dalton Trans., 2017, vol. 46, no. 22, p. 7317. https://doi.org/10.1039/c7dt00369b

    Article  CAS  PubMed  Google Scholar 

  84. Badiei, A., Goldooz, H., and Ziarani, G.M., Appl. Surf. Sci., 2011, vol. 257, no. 11, p. 4912. https://doi.org/10.1016/j.apsusc.2010.12.146

    Article  CAS  Google Scholar 

  85. Hosseini, M., Ganjali, M.R., Rafiei-Sarmazdeh, Z., Faridbod, F., Goldooz, H., Badiei, A., N urozi, P., and Ziarani, G.M., Anal. Chim. Acta, 2013, vol. 771, p. 96. https://doi.org/10.1016/j.aca.2013.01.064

    Article  CAS  Google Scholar 

  86. Sarkar, K., Dhara, K., Nandi, M., Roy, P., Bhaumik, A., and Banerjee, P., Adv. Funct. Mater., 2009, vol. 19, no. 2, p. 223. https://doi.org/10.1002/adfm.200800888

    Article  CAS  Google Scholar 

  87. Shamel, A. and Salemnoush, T., Russ. J. Appl. Chem., 2016, vol. 89, no. 3, p. 500. https://doi.org/10.1134/S10704272160030228

    Article  CAS  Google Scholar 

  88. Singha, D., Das, T., Satyanarayana, L., Roy, P., and Nandi, M., New J. Chem., 2019, vol. 43, no. 39, p. 15563. https://doi.org/10.1039/c9nj03010g

    Article  CAS  Google Scholar 

  89. Shah, M.T., Balouch, A., and Alveroglu, E., J. Mater. Chem. (C), 2018, vol. 6, no. 5, p. 1105. https://doi.org/10.1039/c7tc04298a

    Article  CAS  Google Scholar 

  90. Meng, Q., Zhang, X., He, C., Zhou, P., Su, W., and Duan, C., Talanta, 2011, vol. 84, no. 1, p. 53. https://doi.org/10.1016/j.talanta.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  91. Losev, V.N., Bartsev V.N, Kravtsov, I.A., and Trofimchuk, A.K., J. Analyt. Chem., 2001, vol. 56, no. 5, p. 433. https://doi.org/10.1023/A:1016622902536

    Article  CAS  Google Scholar 

  92. Losev, V.N., Metelitsa, S.I., Trofimchuk, A.K., and Siryk, O.O., Meth. Obj. Chem. Anal., 2017, vol. 12, no. 1, p. 5. https://doi.org/10.17721/moca.2017.5-11

    Article  CAS  Google Scholar 

  93. Bilgic, A. and Cimen, A., J. Mol. Liq., 2020, vol. 312, article 113398. https://doi.org/10.1016/j.molliq.2020.113398

  94. Voronina, R.D. and Zorov, N.B., J. Analyt. Chem., 2007, vol. 62, no. 3, p. 206. https://doi.org/10.1134/S1061934807030021

    Article  CAS  Google Scholar 

  95. Zhang, D., Wang, X., Qiao, Z.-A., Tang, D., Liu, Y., and Huo, Q., J. Phys. Chem. (C), 2010, vol. 114, no. 29, p. 12505. https://doi.org/10.1021/jp1042156

    Article  CAS  Google Scholar 

  96. Gao, Z., Qiao, M., Tan, M., Peng, H., and Ding, L., Coll. Surf. (A), 2020, vol. 586, article 124194. https://doi.org/10.1016/j.colsurfa.2019.124194

  97. Belyakova, L.A. and Lyashenko, D.Yu., Khim. Fiz. Tekhn. Poverkhn., 2012, vol. 3, no. 3, p. 227

    CAS  Google Scholar 

  98. Belyakova, L.A. and Lyashenko, D.Yu., Zh. Prikl. Spektroskop., 2008, vol. 75, no. 3, p. 299

    Google Scholar 

  99. Belyakova, L.A., Lyashenko, D.Yu., Shvrts, A.N., Khim. Tekhn. Wody, 2014, vol. 36, no. 2, p. 105.

    CAS  Google Scholar 

  100. Belyakova, L.A. and Lyashenko, D.Yu., Russ. J. Phys. Chem. (A), 2014, vol. 88, no. 3, p. 489 https://doi.org/10.1134/S0036024414030030

    Article  CAS  Google Scholar 

  101. Fetisova, Yu.S., Dudarko, O.A., Bauman, M., Lobnik, A., and Sliesarenko, V.V., J. Sol-Gel Sci. Technol., 2018, vol. 88, no. 1, p. 66. https://doi.org/10.1007/s10971-018-4692-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lisichkin.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 704–815 https://doi.org/10.31857/S0044460X21050188.

In memory of H.V. Ehrlich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisichkin, G.V., Olenin, A.Y. Chemically Modified Silica in Sorption-Instrumental Analytical Methods. Russ J Gen Chem 91, 870–889 (2021). https://doi.org/10.1134/S1070363221050182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050182

Keywords:

Navigation