Skip to main content
Log in

Some Properties of Polycaprolactone Composites with Cellulose Nanocrystals

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Composites of polycaprolactone with cellulose nanocrystals were produced, and their morphological, thermal, and strength characteristics were examined. It was found that nanocrystalline cellulose as a filler increased the porosity of the resultant composite materials. A conclusion was made that nanocrystalline cellulose can act as an initiator of polycaprolactone crystallization and affect the growth of the polymer crystallites. Incorporation of cellulose nanocrystals into the polycaprolactone matrix increased the hydrophilicity of the material and promoted an increase in water sorption while making the composite more brittle as indicated by decrease in the elongation at break and icreases in the tensile strength and Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Siqueira, G., Bras, J., and Dufresne, A., Polymers (Basel), 2010, no. 2, p. 728. https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  2. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.Ch., J. Colloid Interface Sci., 2017, no. 494, p. 397. https://doi.org/10.1016/j.jcis.2017.01.077

    Article  CAS  PubMed  Google Scholar 

  3. Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mari ano, M., Dufresne, A., Thomas, S., and Gałęski, A., Progr. Polym. Sci., 2018, no. 87, p. 197. https://doi.org/10.1016/j.progpolymsci.2018.07.008

    Article  CAS  Google Scholar 

  4. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A., Angew. Chem., Int. Ed., 2011, no. 50, p. 5438. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  5. Habibi, Y., Lucia, L., and Rojas, O., Chem. Rev., 2010, vol. 110, no. 6, p. 3479. https://doi.org/10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  6. Wohlhauser, S., Delepierre, G., Labet, M., Morandi, G., Thielemans, W., Weder, C., and Zoppe, J., Macromolecules, 2018, no. 51, p. 6157. https://doi.org/10.1021/acs.macromol.8b00733

    Article  CAS  Google Scholar 

  7. Woodruff, M. and Hutmacher, D., Progr. Polym. Sci., 2010, no. 35, p. 1217. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  8. Siqueira, G., Fraschini, C., Bras, J., Dufresne, A., Prud’homme, R., and Laborie, M., Eur. Polym. J., 2011, no. 47, p. 2216. https://doi.org/10.1016/j.eurpolymj.2011.09.014

    Article  CAS  Google Scholar 

  9. Xiong, R., Hameed, N., and Guo, Q., Carbohydr. Polym., 2012, no. 90, p. 575. https://doi.org/10.1016/j.carbpol.2012.05.080

    Article  CAS  PubMed  Google Scholar 

  10. Sheng, L., Jiang, R., Zhu, Y., and Ji, Y., J. Macromol. Sci., B, 2014, vol. 53, no. 5, p. 820. https://doi.org/10.1080/00222348.2013.861311

    Article  CAS  Google Scholar 

  11. Bol’basov, E.N., Antonova, L.V., Matveeva, V.G., Novikov, V.A., Shesterikov, E.V., Bogomolova, N.L., Golovkin, A.S., Tverdokhlebov, S.I., Barbarash, O.L., and Barbarash, L.S., Biomed. Khim., 2016, vol. 62, issue 1, p. 56. https://doi.org/10.18097/PBMC20166201056

    Article  CAS  Google Scholar 

  12. Cheng, L., Ghobeira, R., Cools, P., Liu, Z., Yan, K., De Geyter, N., and Morent, R., Appl. Surf. Sci., 2020, vol. 516, p. 146067. https://doi.org/10.1016/j.apsusc.2020.146067

    Article  CAS  Google Scholar 

  13. Ahmed, F., Saleemi, S., Khatri, Z., Abroa, M.I., and Kim, I.S., Carbohydr. Polym., 2015, no. 115, p. 388. https://doi.org/10.1016/j.carbpol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Joshi, M.K., Tiwari, A.P., Pant, H.R., Shrestha, B.K., Kim, H.J., Park, C.H., and Kim, C.S., ACS Appl. Mater. Interfaces, 2015, no. 7, p. 19672. https://doi.org/10.1021/acsami.5b04682

    Article  CAS  PubMed  Google Scholar 

  15. Boujemaoui, A., Sanchez, C., Engström, J., Bruce, C., Fogelström, L., Carlmark, A., and Malmström, E., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 40, p. 35305. https://doi.org/10.1021/acsami.7b09009

    Article  CAS  PubMed  Google Scholar 

  16. Voronova, M.I., Surov, O.V., Rubleva, N.V., Kochkina, N.E., and Zakharov, A.G., Russ. J. Bioorg. Chem., 2020, vol. 46, no. 7, p. 1295. https://doi.org/10.1134/S106816202007016X

    Article  CAS  Google Scholar 

  17. Okura, H., Wada, M., and Serizawa, T., Chem. Lett., 2014, vol. 43, p. 601. https://doi.org/10.1246/cl.131181

    Article  CAS  Google Scholar 

  18. Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., and Thomas, S., Polymer, 2017, vol. 132, p. 368. https://doi.org/10.1016/j.polymer.2017.09.043

    Article  CAS  Google Scholar 

  19. Chakrabarty, A. and Teramoto, Y., Polymers, 2018, vol. 10, p. 517. https://doi.org/10.3390/polym10050517

    Article  CAS  PubMed Central  Google Scholar 

  20. Ferreira, F.V., Dufresne, A., Pinheiro, I.F., Souza, D.H.S., Gouveia, R.F., Mei, L.H.I., and Lona, L.M.F., Eur. Polym. J., 2018, vol. 108, p. 274. https://doi.org/10.1016/j.eurpolymj.2018.08.045

    Article  CAS  Google Scholar 

  21. Ahmed, F., Saleemi, S., Khatri, Z., Abro, M., and Kim, I., Carbohydr. Polym., 2015, no. 115, p. 388. https://doi.org/10.1016/j.carbpol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  22. Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., Podoinikova, M.V., Fofanov, A.D., and Silina, E.V., Khim. Rast. Syr’ya, 2001, no. 1, p. 5.

    Google Scholar 

  23. Bondeson, D., Mathew, A., and Oksman, K., Cellulose, 2006, vol. 13, no. 2, p. 171. https://doi.org/10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  24. Xu, X., Wang, H., Jiang, L., Wang, X., Payne, S.A., Zhu, J.Y., and Li, R., Macromolecules, 2014, no. 47, p. 3409. https://doi.org/10.1021/ma402627j

    Article  CAS  Google Scholar 

  25. Guo, Q. and Zheng, H., Polymer, 1999, vol. 40, no. 3, p. 637. https://doi.org/10.1016/S0032-3861(98)00326-7

    Article  CAS  Google Scholar 

  26. Dufresne, A., Can. J. Chem., 2008, no. 86, p. 484. https://doi.org/10.1139/V07-152

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data were obtained with the use of equipment of the Upper Volga Regional Center for Physicochemical Research.

Funding

This study was financially supported by the Russian Science Foundation (project no. 17-13-01240-П).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Surov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 786–793 https://doi.org/10.31857/S0044460X21050176.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, O.V., Lebedeva, E.O., Rubleva, N.V. et al. Some Properties of Polycaprolactone Composites with Cellulose Nanocrystals. Russ J Gen Chem 91, 864–869 (2021). https://doi.org/10.1134/S1070363221050170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050170

Keywords:

Navigation