Skip to main content
Log in

Synthesis of Copper Nanoplates by Reduction of Cu(II) in the Presence of an Alkoxycarboxylic Acid

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Triangular and hexagonal copper nanoplates were synthesized by reduction of copper(II) nitrate with hydrazine hydrate in water in the presence of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid. The resultant copper particles were characterized by X-ray diffraction analysis and electron microscopy. The effect of the synthesis temperature and duration, as well as of the stabilizer, copper ions, and sodium hydroxide concentrations on the size, morphology, and polydispersity degree of the particles synthesized was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kamyshny, A., Steinke, J., and Magdassi, S., Open Appl. Phys. J., 2010, vol. 4, p. 19. https://doi.org/10.2174/1874183501104010019

    Article  CAS  Google Scholar 

  2. Espera, A.H.Jr., Dizon, J.R.C., Chen, Q., and Advincula, R.C., Prog. Addit. Manuf., 2019, vol. 4, no. 3, p. 245. https://doi.org/10.1007/s40964-019-00077-7

    Article  Google Scholar 

  3. Titkov, A.I., Bulina, N.V., Ulihin, A.S., Shundrina, I.K., Karpova, E.V., Gerasimov, E.Yu., Yukhin, Yu.M., and Lyakhov, N.Z., J. Mater. Sci., 2017, vol. 28, no. 2, p. 2029. https://doi.org/10.1007/s10854-016-5762-0

    Article  CAS  Google Scholar 

  4. Titkov, A.I., Shundrina, I.K., Gadirov, R.M., Odod, A.V., Kurtsevich, A.E., Yukhin, Yu.M., and Lyakhov, N.Z., Mater. Today: Proc., 2018, vol. 5, issue 8, part 2, p. 16042. https://doi.org/10.1016/j.matpr.2018.05.049

    Article  CAS  Google Scholar 

  5. Abhinav, V.K., Rao, V.K.R., Karthik, P.S., and Singh, S.P., RSC Adv., 2015, no. 5, p. 63985. https://doi.org/10.1039/C5RA08205F

    Article  CAS  Google Scholar 

  6. Ren, H.M., Guo, Y., Huang, S.Y., Zhang, K., Yuen, M.M.F., Fu, X.Z., Yu, S., Sun, R., and Wong, C.P., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 13685. https://doi.org/10.1021/acsami.5b03571

    Article  CAS  PubMed  Google Scholar 

  7. Lee, Y.I., Kim, S., Jung, S.B., Myung, N.V., and Choa, Y.H., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 13, p. 5908. https://doi.org/10.1021/am401757y

    Article  CAS  PubMed  Google Scholar 

  8. Curtis, A.C., Duff, D.G., Edwards, P.P., Jefferson, D.A., Johnson, B.F.G., Kirkland, A.I., and Wallace, A.S., Angew. Chem., Int. Ed., 1988, vol. 27, p. 1530. https://doi.org/10.1002/anie.198815301

    Article  Google Scholar 

  9. Pastoriza-Santos, I., Sanchez-Iglesias, A., RodrıguezGonzalez, B., and Liz-Marzan, L.M., Small, 2009, vol. 5, p. 440. https://doi.org/10.1002/smLl.200801088

    Article  CAS  PubMed  Google Scholar 

  10. Park, Y.S. and Chae, H.K., Chem. Mater., 2010, vol. 22, p. 6280. https://doi.org/10.1021/cm101961g

    Article  CAS  Google Scholar 

  11. Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.T., Angew. Chem., Int. Ed., 2009, vol. 48, no. 1, p. 60. https://doi.org/10.1002/anie.200802248

    Article  CAS  Google Scholar 

  12. Li, Y., Fan, Z., Yang, H., Yuan, X., Chao, Y., Li, Y., and Wang, C., Cryst. Eng. Commun., 2020, vol. 22, no. 45, p. 7786. https://doi.org/10.1039/d0ce01106a

    Article  CAS  Google Scholar 

  13. Xu, S., Sun, X., Ye, H., You, T., Song, X, and Sun, S., Mater. Chem. Phys., 2010, vol. 120, p. 1. https://doi.org/10.1016/j.matchemphys.2009.10.049

    Article  CAS  Google Scholar 

  14. Sun, Y., Xu, L., Yin, Z., and Song, X., J. Mater. Chem., A, 2013, vol. 1, p. 12361. https://doi.org/10.1039/c3ta12526b

    Article  CAS  Google Scholar 

  15. Lee, J.W., Han, J., Lee, D.S., Bae, S., Lee, S.H., Lee, S.K., Moon, B.J., Choi, C.J., Wang, G., and Kim, T.W., Small, 2018, vol. 14, p. 1703312. https://doi.org/10.1002/smLl.201703312

    Article  Google Scholar 

  16. Titkov, A.I., Logutenko, O.A., Vorob’yov, A.M., Gerasimov, E.Yu., Bulina, N.V., Yukhin, Yu.M., and Lyakhov, N.Z., Russ. J. Gen. Chem., 2019, vol. 89, no. 1, p. 100. https://doi.org/10.1134/S1070363219010183

    Article  CAS  Google Scholar 

  17. Titkov, A.I., Logutenko, O.A., Gerasimov, E.Yu., Shundrina, I.K., Karpova, E.V., and Lyakhov, N.Z., J. Incl. Phenom. Macrocycl. Chem., 2019, vol. 94, nos. 3–4, p. 287. https://doi.org/10.1007/s10847-019-00921-x

    Article  CAS  Google Scholar 

  18. Tang, Z., Zhang, Q., Yin, Y., and Chang, C.A., J. Phys. Chem., C, 2014, vol. 118, p. 21589. https://doi.org/10.1021/jp503319s

    Article  CAS  Google Scholar 

  19. Medvedeva, X., Vidyakina, A., Li, F., Mereshchenko, A., and Klinkova, A., Nanomaterials, 2019, vol. 9, p. 1445. https://doi.org/10.3390/nano9101445

    Article  CAS  PubMed Central  Google Scholar 

  20. Lele, B.S. and Kulkarni, M.G., US Patent 6239252B1, 2001.

Download references

Funding

This study was carried out within the framework of the state assignment of the Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences (project no. 0237-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Logutenko.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 778–785 https://doi.org/10.31857/S0044460X21050164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logutenko, O.A., Titkov, A.I. & Vorobyov, A.M. Synthesis of Copper Nanoplates by Reduction of Cu(II) in the Presence of an Alkoxycarboxylic Acid. Russ J Gen Chem 91, 857–863 (2021). https://doi.org/10.1134/S1070363221050169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050169

Keywords:

Navigation