Skip to main content
Log in

Microcrystalline Anti-Stokes Luminophores NaYF4 Doped with Ytterbium, Erbium, and Lutetium Ions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Microcrystalline anti-Stokes luminophores NaY1–xyzYbxEryLuzF4 were obtained for the first time by hydrothermal synthesis. These compounds crystallize in the hexagonal crystal system, structural type β-NaYF4. It was found that the addition of a non-luminescent lutetium(III) ions results in up-conversion luminescence enhancement in more than 2 times upon 980 nm excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grebenik, E., Nadort, A., Generalova, A., Nechaev, A., Sreenivasan, V., Khaydukov, E., Semchishen, V., Popov, A., Sokolov, V., Akhmanov, A., Zubov, V., Klinov, D., Panchenko, V., Deyev, S., and Zvyagin, A., J. Biomed. Opt., 2013, vol. 18, p. 076004-1. https://doi.org/10.1117/1.JBO.18.7.076004

    Article  CAS  PubMed  Google Scholar 

  2. Auzel, F., Chem. Rev., 2004, vol. 4, p. 139. https://doi.org/10.1021/cr020357g

    Article  CAS  Google Scholar 

  3. Stepuk, A., Mohn, D., Grass, R., Zehndner, M., Kramer, K., Pelle, F., Ferrier, A., and Stark, W., Dent. Mater. J., 2012, vol. 28, p. 304. https://doi.org/10.1016/j.dental.2011.11.018

    Article  CAS  Google Scholar 

  4. Sui, J., Chen, Z., Liu, G., Dong, X., Yu, W., and Wang, J., J. Lumin., 2019, vol. 209, p. 357. https://doi.org/10.1016/j.jlumin.2019.01.046

    Article  CAS  Google Scholar 

  5. Klier, D.T. and Kumke, M.U., Opt. Mater., 2015, vol. 90, p. 200. https://doi.org/10.1021/jp5103548

    Article  CAS  Google Scholar 

  6. Kalinichev, A.A., Kurochkin, M.A., Kolomytsev, A.Y., Khasbieva, R.S., Kolesnikov, E.Y., Lähderanta, E., and Kolesnikov, I.E., Opt. Mater., 2019, vol. 90, p. 200. https://doi.org/10.1016/j.optamt.2019.02.035

    Article  CAS  Google Scholar 

  7. Vidyakina, A.A., Kolesnikov, I. E., Bogachev, N.A., Skripkin, M.Y., Tumkin, I.I., Lähderanta, E., and Mereshchenko, A.S., Materials, 2020, vol. 13, p. 3397. https://doi.org/10.3390/ma13153397

    Article  CAS  PubMed Central  Google Scholar 

  8. Wang, Z., Tao, F.,Yao, L., Cai, W., and Li, X., J. Cryst. Growth, 2006, vol. 290, p. 296. https://doi.org/10.1016/j.jcrysgro.2006.01.012

    Article  CAS  Google Scholar 

  9. Liang, B.X., Wang, X., Zhuang, J., Peng, Q., and Li, Y., Adv. Funct. Mater., 2007, vol. 17, p. 2757. https://doi.org/10.1002/adfm.200600807

    Article  CAS  Google Scholar 

  10. Sui, Y., Tao, K., Tian, Q., and Sun, K., J. Phys. Chem., 2012, vol. 116, p. 1732. https://doi.org/10.1021/jp208780x

    Article  CAS  Google Scholar 

  11. Qian, H. and Zhang, Y., Langmuir, 2008, vol. 24, p. 12123. https://doi.org/10.1021/la802343f

    Article  CAS  PubMed  Google Scholar 

  12. Ding, M., Lu, C., Cao, L., Ni, Y., and Xu, Z., Cryst. Eng. Commun., 2013, vol. 15, p. 8366. https://doi.org/10.1039/c3ce41427b

    Article  CAS  Google Scholar 

  13. Tong, L., Li, X., Hua, R., Li, X., Zheng, H., Sun, J., Zhang, J., Cheng, L., and Chen, B., J. Lumin., 2015, vol. 167, p. 386. https://doi.org/10.1016/j.jlumin.2015.07.017

    Article  CAS  Google Scholar 

  14. Yu, S., Gao, X., Jing, H., Zhao, J., and Su, H., Cryst. Eng. Commun.,. 2013, vol. 15, p. 10100. https://doi.org/10.1039/c3ce41857j

  15. Szefczyk, B., Roszaka, R., and Roszaka, S., RCS Adv., 2014, vol. 4, p. 22526. https://doi.org/10.1039/C4RA00211C

    Article  CAS  Google Scholar 

  16. Shannon, R.D., Acta Crystallogr. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  17. Kumke, M.U. and Klier, D.T., J. Mater. Chem. C, 2015, vol. 3, p. 11228. https://doi.org/10.1039/C5TC02218E

    Article  CAS  Google Scholar 

  18. Lage, M.M. and Matinaga, F.M., J. Appl. Phys., 2006, vol. 99, p. 053510. https://doi.org/10.1063/1.2177380

    Article  CAS  Google Scholar 

  19. Shi, F. and Zhao, Y., J. Mater. Chem., 2014, vol. 2, p. 2198. https://doi.org/10.1039/c3tc32303j

    Article  CAS  Google Scholar 

  20. Ofelt, G.S., J. Chem. Phys., 1962, vol. 37, p. 511. https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  21. Judd, B.R., Phys. Rev., 1962, vol. 127, p. 750. https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  22. Ju, Q., Liu, Y., Li, R., Liu, L., Luo, W., and Chen, X., J. Phys. Chem., 2009, vol. 113, p. 2309. https://doi.org/10.1021/jp809233p

    Article  CAS  Google Scholar 

  23. Li, D., Shao, Q., Dong, Y., and Jiang, J., J. Rare Earths, 2014, vol. 32, no. 11, p. 1032. https://doi.org/10.1016/S1002-0721(14)60179-4

    Article  CAS  Google Scholar 

  24. Beeby, A., Clarkson, I.M., Dickins, R.S., Faulkner, S., Parker, D., Royle, L., De Sousa, A.S., Williams, J.A.G., and Woods, M., J. Chem. Soc. Perkin Trans., 1999, vol. 2, p. 493. https://doi.org/10.1039/a808692c

    Article  Google Scholar 

  25. Kropp, J.L. and Windsor, M.W., J. Chem. Phys., 1965, vol. 42, p. 1599. https://doi.org/10.1063/1.1696166

    Article  CAS  Google Scholar 

  26. Tanaka, F., Kawasaki, Y., and Yamashita, S., J. Chem. Soc. Faraday Trans., 1988, vol. 84, p. 1083. https://doi.org/10.1039/F19888401083

    Article  CAS  Google Scholar 

  27. Jezowska-Trzebiatowska, B., Legendziewicz, J., and Strȩk, W., Inorg. Chim. Acta, 1984, vol. 95, p. 157. https://doi.org/10.1016/S0020-1693(00)94557-2

    Article  CAS  Google Scholar 

  28. Horrocks, W.D. and Sudnick, D.R., J. Am. Chem. Soc., 1979, vol. 101, p. 334. https://doi.org/10.1021/ja00496a010

    Article  CAS  Google Scholar 

  29. Gorbunov, A.O., Lindqvist-Reis, P., Mereshchenko, A.S., and Skripkin, M.Yu., J. Mol. Liq., 2017, vol. 240, p. 25. https://doi.org/10.1016/j.molliq.2017.04.136

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with the support of the Russian Foundation for Basic Research (project no. 20-33-70025) using the equipment of the Research Park of Saint-Petersburg State University (“Interdisciplinary Resource Centre for Nanotechnology,” “Centre for Optical and Laser Materials Research,” “Thermogravimetric and Calorimetric Research Centre,” “Cryogenic Department,” “Chemical Analysis and Materials Research Centre,” “Centre for X-ray Diffraction Studies,” “SPbU Computing Centre,” and “Magnetic Resonance Research Centre”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mereshchenko.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 763–769 https://doi.org/10.31857/S0044460X21050140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyakina, A.A., Zheglov, D.A., Oleinik, A.V. et al. Microcrystalline Anti-Stokes Luminophores NaYF4 Doped with Ytterbium, Erbium, and Lutetium Ions. Russ J Gen Chem 91, 844–849 (2021). https://doi.org/10.1134/S1070363221050145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050145

Keywords:

Navigation