Skip to main content
Log in

Synthesis of the Gold Glyconanoparticles Based on 6-Deoxy- and 2-(Acetylamino)aldoses 3-Thiopropionylhydrazones

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A method for the synthesis of gold glyconanoparticles with average particle size of 18–21 nm and low polydispersity index based on readily available thiolated compounds: 3-thiopropionylhydrazones of L-fucose, L-rhamnose, N-acetyl-D-glucosamine, and N-acetyl-D-mannosamine has been developed. It has been shown that some of the gold glyconanoparticles exhibit antitumor activity, and the initial thiolated glycoligands have shown strong radioprotective activity, increasing the survival rate of mortally irradiated mice by 50–70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Application of Nanotechnology in Biomedical Sciences, Sheikh, F.A., Ed., Singapore: Springer Nature Singapore Pte Ltd., 2020. https://doi.org/10.1007/978-981-15-5622-7

  2. Glycochemical Synthesis: Strategies and Applications, Hung, S.-C. and Zulueta, M.M.L., Eds., Hoboken: John Wiley & Sons, Inc., 2016, 576 p. https://doi.org/10.1002/9781119006435.ch16

  3. Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., New Jersey: John Wiley & Sons, 2011. 424 p. https://doi.org/10.1002/9780470944349.ch6

  4. Carbohydrate Nanotechnology, Stine, K.J., Ed., New Jersey: John Wiley & Sons, 2016. 470 p. https://doi.org/10.1002/9781118860212.ch3

  5. Self-Assembled Monolayers of Carbohydrate Derivatives on Gold Surfaces, in Carbohydrate, Caliskan, M., Kavakli, I.H., and Oz, G.C., Eds., Istanbul: InTech Publisher, 2017. 164 p. https://doi.org/10.5772/66194

  6. Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials, Grumezescu, A., Ed., Oxford: Elsevier Science Publishing Co Inc., 2016. https://doi.org/10.1016/B978-0-323-42863-7.00002-5

  7. Marin, M.J., Schofield, C.L., Field, R.A., and Russell, D.A., Analyst., 2015, vol. 140, p. 59. https://doi.org/10.1039/C4AN01466A

    Article  CAS  PubMed  Google Scholar 

  8. de la Fuente, J.M. and Penades, S., Biochim. Biophys. Acta, 2006, vol. 1760, no. 4, p. 636. https://doi.org/10.1016/j.bbagen.,2005.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Barrientos, A.G., de la Fuente, J.M., Rojas, T.C., Fernandez, A., and Penades, S., Chem. Eur. J., 2003, vol. 9, no. 9, p. 1909. https://doi.org/10.1002/CHEM.200204544

    Article  CAS  PubMed  Google Scholar 

  10. Vetro, M., Safari, D., Fallarini, S., Salsabila, K., Lahmann, M., Penades, S., Lay, L., Marradi, M., and Compostella, F., Nanomedicine, 2017, vol. 12, no. 1, p. 13. https://doi.org/10.2217/nnm-2016-0306

    Article  CAS  PubMed  Google Scholar 

  11. Bor, G., Mat Azmi, I.D., and Yaghmur, A., Ther. Deliv., 2019, vol. 10, no. 2, p. 113. https://doi.org/10.4155/tde-2018-0062

    Article  CAS  PubMed  Google Scholar 

  12. Singh, P., Pandit, S., Mokkapati, V.R.S.S., Garg, A., Ravikumar, V., and Mijakovic, I., Int. J. Mol. Sci., 2018, vol. 19, no. 7, p. e1979. https://doi.org/10.3390/ijms19071979

  13. Bogart, L.K., Pourroy, G., Murphy, C.J., Puntes, V., Pellegrino, T., Rosenblum, D., Peer, D., and Lévy, R., ACS Nano, 2014, vol. 8, no. 4, p. 3107. https://doi.org/10.1021/nn500962q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., and Pazoki-Toroudi, H., Cancer Gene Therapy, 2016, vol. 23, p. 365. https://doi.org/10.1038/cgt.2016.42

    Article  CAS  PubMed  Google Scholar 

  15. Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S., Analyt. Bioanalyt. Chem., 2010, vol. 398, p. 867. https://doi.org/10.1007/s00216-010-3964-5

    Article  CAS  Google Scholar 

  16. Combemale, S., Assam-Evoung, J.-N., Houaidji, S., Bib, R., and Barragan-Montero, V., Molecules, 2014, vol. 19, no. 1, p. 1120. https://doi.org/10.3390/molecules19011120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murakami, T., Hirono, R., Sato, Y., and Furusawa, K., Carbohyd. Res., 2007, vol. 342, no. 8, p. 1009. https://doi.org/10.1016/j.carres.,2007.02.024

    Article  CAS  Google Scholar 

  18. Yang, H. and Cheng, Q., Analyst., 2017, vol. 142, no. 14, p. 2654. https://doi.org/10.1039/c7an00428a

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. and Misra, R.D.K., Acta Biomater., 2007, vol. 33, no. 6, p. 838. https://doi.org/10.1016/j.actbio.2007.05.011

    Article  CAS  Google Scholar 

  20. Chuang, Y.-J., Zhou, X., Pan, Z., and Turchi, C., Biochem. Biophys. Res. Comm., 2009, vol. 389, no. 1, p. 22. https://doi.org/10.1016/j.bbrc.,2009.08.079

    Article  CAS  PubMed  Google Scholar 

  21. Higbee-Dempsey, E.M., Amirshaghaghi, A., Case, M.J., Bouché, M., Kim, J., Cormode, D.P., and Tsourkas, A., JACS, 2020, vol. 142, p. 7783. https://doi.org/10.1021/jacs.9b13813

    Article  CAS  Google Scholar 

  22. Zhi, Z., Powell, A.K., and Turnbull, J.E., Anal. Chem., 2006, vol. 78, no. 14, p. 4786. https://doi.org/10.1021/ac060084f

    Article  CAS  PubMed  Google Scholar 

  23. Coxon, T.P., Fallows, T.W., Gough, J.E., and Webb, S.J., Org. Biomol. Chem., 2015, vol. 13, no. 43, p. 10751. https://doi.org/10.1039/c5ob01591j

    Article  CAS  PubMed  Google Scholar 

  24. Gurav, D., Varghese, O.P., Hamad, O.A., Nilsson, B., Hilborn, J., and Oommen, O.P., Chem. Comm., 2016, vol. 52, no. 5, p. 966. https://doi.org/10.1039/c5cc09215a

    Article  CAS  PubMed  Google Scholar 

  25. Villadsen, K., Martos-Maldonado, M.C., Jensen, K.J., and Thygesen, M.B., ChemBioChem., 2017, vol. 18, no. 7, p. 574. https://doi.org/10.1002/cbic.201600582

    Article  CAS  PubMed  Google Scholar 

  26. Coulibaly, F.S. and Youan, B.B.C., AIMS Mol. Sci., 2017, vol. 4, no. 1, p. 1. https://doi.org/10.3934/molsci.2017.1.1

    Article  CAS  Google Scholar 

  27. Vasileva, M.Yu., Ershov, A.Yu., Baygildin, V.A., Shabsels, B.M., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1205. https://doi.org/10.1134/S1070363218060257

    Article  CAS  Google Scholar 

  28. Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1199. https://doi.org/10.1134/S1070363218060245

    Article  CAS  Google Scholar 

  29. Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., Baygildin, V.A., Nasledov, D.G., Kuleshova, L.Yu., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 103. https://doi.org/10.1134/S1070363218010164

    Article  CAS  Google Scholar 

  30. Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V., Pakal’nis, V.V., Mokeev, M.V., and Shamanin, V.V., Russ. J. Org. Chem., 2009, vol. 45, no. 5, p. 740. https://doi.org/10.1002/chin.,201008197

    Article  CAS  Google Scholar 

  31. Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V. Pakal’nis, V.V., and Shamanin, V.V., Russ. J. Org. Chem., 2009, vol. 45, no. 10, p. 1488. https://doi.org/10.1134/S107042800910011X

    Article  CAS  Google Scholar 

  32. Tolosa, L., Donato, M.T., and Gomez-Lechon, M.J., Met. Mol. Biol., 2015, vol. 1250, p. 333. https://doi.org/10.1007/978-1-4939-2074-7_26

    Article  CAS  Google Scholar 

  33. Johnke, R.M., Sattler, J.A., and Allison, R.R., Future Oncol., 2014, vol. 10, no. 15, p. 2345. https://doi.org/10.2217/fon.14.175

    Article  CAS  PubMed  Google Scholar 

  34. Lagoda, I.V., Yakunchikova, E.A., Drachev, I.S., Grebenyuk, A.N., Martynenkov, A.A., Kuleshova, L.Yu., Kopanitsa, M.A., and Ershov, A.Yu., Radiats. Biol. Radioekol., 2020, vol. 60, no. 3, p. 291. https://doi.org/10.31857/S0869803120020071

    Article  Google Scholar 

  35. Costioli, M.D., Berdat, D., Freitag, R., André, X., and Müller, A.H.E., Macromolecules, 2005, vol. 38, no. 9, p. 3630. https://doi.org/10.1021/ma0484882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Ershov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 2, pp. 260–268 https://doi.org/10.31857/S0044460X21020098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, A.Y., Martynenkov, A.A., Lagoda, I.V. et al. Synthesis of the Gold Glyconanoparticles Based on 6-Deoxy- and 2-(Acetylamino)aldoses 3-Thiopropionylhydrazones. Russ J Gen Chem 91, 215–222 (2021). https://doi.org/10.1134/S1070363221020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221020092

Keywords:

Navigation