Skip to main content

Acylhydrazone Based on 2-N-Tosylaminobenzaldehyde and Girard T Reagent: Synthesis, Structure, and Coordination Ability

Abstract

The novel hydrazone, a condensation product of 2-N-tosylaminobenzaldehyde and Girard T reagent, as well as the Cu(II), Ni(II), Co(II) and Fe(III) complexes on its base were synthesized. The ligand structure and properties were studied with IR, UV, 1H NMR spectroscopy, mass-spectrometry, and potentiometry method. Structure of nickel(II) complex was determined by X-ray diffraction analysis.

This is a preview of subscription content, access via your institution.

Scheme
Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Scheme

REFERENCES

  1. Kölmel, D.K. and Kool, E.T., Chem Rev., 2017, vol. 117, no. 15, p. 10358. https://doi.org/10.1021/acs.chemrev.7b00090

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Rollas, S.and Küçükgüzel, S.G., Molecules, 2007, vol. 12, no. 8, p. 1910. https://doi.org/10.3390/12081910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Pandeya, S.N.and Dimmock, J.R., Pharmazie, 1993, vol. 48, no. 9, p. 659.

    CAS  PubMed  Google Scholar 

  4. Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova, Y.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, p. 643. https://doi.org/10.1070/RC2009v078n07ABEH003890

    CAS  Article  Google Scholar 

  5. Kogan, V.A., Zelentsov, V.V., Larin, G.M., and Lukov, V.V., Kompleksy perekhodnykh metallov s gidrazonami (Complexes of Transition Metals with Hydrazones), Moscow: Nauka, 1990, p. 112.

  6. Dutta, R.L.and Hossain, M.M., J. Sci. Ind. Res., 1985, vol. 44A, p. 635.

    CAS  Google Scholar 

  7. Naseema, K., Sujith, K.V., Manjunatha, K.B., Kalluraya, B., Umesh, G., and Rao, V., Opt. Laser Technol., 2010, vol. 42, no. 5, p. 741. https://doi.org/10.1016/j.optlastec.2009.11.019

    CAS  Article  Google Scholar 

  8. Feng, Q., Li, Y., Shi, G., Wang, L., Zhang, W., Li, K., Hou, H., and Song, Y., J. Mater. Chem. C, 2016, vol. 4, no. 36, p. 8552. https://doi.org/10.1039/C6TC01549B

    CAS  Article  Google Scholar 

  9. Lawrence, M.A.W., Lorraine, S.C., Wilson, K.A., and Wilson, K., Polyhedron, 2019, vol. 173, p. 114111. https://doi.org/10.1016/j.poly.2019.114111

    CAS  Article  Google Scholar 

  10. Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Chem. Rev., 2010, vol. 110, no. 8, p. 4724. https://doi.org/10.1021/cr900226k

    CAS  Article  PubMed  Google Scholar 

  11. Su, X. and Aprahamian, I., Chem. Soc. Rev., 2014, vol. 43, p. 1963. https://doi.org/10.1039/C3CS60385G

    CAS  Article  PubMed  Google Scholar 

  12. Gale, P.A., Busschaert, N., Haynes, C.J.E., Karagiannidis, L.E., and Kirby, I.L., Chem. Soc. Rev., 2014, vol. 43, p. 205. https://doi.org/10.1039/C3CS60316D

    CAS  Article  PubMed  Google Scholar 

  13. Turner, A.P.F., Chem. Soc. Rev., 2013, vol. 42, no. 8, p. 3184. https://doi.org/10.1039/C3CS35528D

    CAS  Article  PubMed  Google Scholar 

  14. Kogan, V.A. and Lukov, V.V., Russ. J. Coord. Chem., 2004, vol. 30, no. 3, p. 205. https://doi.org/10.1023/B:RUCO.0000022119.12007.9c

    CAS  Article  Google Scholar 

  15. Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401. https://doi.org/10.1134/S1070328410060011

    CAS  Article  Google Scholar 

  16. Utochnikova, V.V., Kovalenko, A.D., Burlov, A.S., Marciniak, L., Ananyev, I.V., Kalyakina, A.S., Kurchavov, N.A., and Kuzmina, N.P., Dalton Trans., 2015, vol. 44, p. 12660. https://doi.org/10.1039/C5DT01161B

    CAS  Article  PubMed  Google Scholar 

  17. Kovalenko, A.D., Bushmarinov, I.S., Burlov, A.S., Lepnev, L.S., Ilina, E.G., and Utochnikova, V.V., Dalton Trans., 2018. Vol 47, p. 4524. https://doi.org/10.1039/C7DT04387B

  18. Sutradhar, M., Kirillova, M.V., Guedes da Silva, M.F.C., Liu, C.-M., and Pombeiro, A.J.L., Dalton Trans., 2013, vol. 42, p. 16578. https://doi.org/10.1039/C3DT52453A

    CAS  Article  PubMed  Google Scholar 

  19. Monfared, H.H., Sadighian, S., Kamyabi, M.-A., and Mayer, P., J. Mol. Catal. A Chem., 2009, vol. 304, nos. 1–2, p. 139. https://doi.org/10.1016/j.molcata.2009.02.004

    CAS  Article  Google Scholar 

  20. Singh, P., Singh, A.K., Singh, V.P., Polyhedron, 2013, vol. 65, p. 73. https://doi.org/10.1016/j.poly.2013.08.008

    CAS  Article  Google Scholar 

  21. Levchenkov, S.I., Popov, L.D., Shcherbakov, I.N., Ionov, A.M., Kogan, V.A., Efimov, N.N., Minin, V.V., Ugolkova, E.A., Aleksandrov, G.G., and Starikova, Z.A., Russ. J. Inorg. Chem., 2015, vol. 60, no. 9, p. 1129. https://doi.org/10.1134/S0036023615040129

    CAS  Article  Google Scholar 

  22. Popov, L.D., Shcherbakov, I.N., Tupolova, Yu.P., Burlov, A.S., Lukov, V.V., Kogan, V.A., Levchenkov, S.I., and Aleksandrov, G.G., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 483. https://doi.org/10.1134/S1070328411060078

    CAS  Article  Google Scholar 

  23. Popov, L.D., Shcherbakov, I.N., Tsaturyan, A.A., Tupolova, Y.P., Burlov, A.S., Lukov, V.V., Kogan, V.A., Levchenkov, S.I., and Starikova, Z.A., Russ. J. Coord. Chem., 2013, vol. 39, no. 5, p. 367. https://doi.org/10.1134/S107032841304009X

    CAS  Article  Google Scholar 

  24. Gerbeleu, N.V., Garnovskii, A.D., Arion, V.B., Bourosh, I.N., Simonov, Yu.A., Alekseenko, V.A., Indrichan, K.M., and Khokhlov, A.V., Zh. Neorg. Khim., 1988, vol. 33, no. 7, p. 1781.

    CAS  Google Scholar 

  25. Popov, L.D., Raspopova, E.A., Morozov, A.N., Burlov, A.S., Shcherbakov, I.N., Levchenkov, S.I., Kogan, V.A., and Aleksandrov, G.G., Russ. J. Coord. Chem., 2014, vol. 40, no. 11, p. 806. https://doi.org/10.1134/S1070328414110050

    CAS  Article  Google Scholar 

  26. Kovalenko, A., Rublev, P.O., Tcelykh, L.O., Goloveshkin, A.S., Lepnev, L.S., Burlov, A.S., Vashchenko, A.A., Marciniak, L., Magerramov, A.M., Shikhaliyev, N.G., Vatsadze, S.Z., and Utochnikova, V.V., Chem. Mater., 2019, vol. 31, no. 3, p. 759. https://doi.org/10.1021/acs.chemmater.8b03675

    CAS  Article  Google Scholar 

  27. Burlov, A.S., Garnovskii, A.D., Alekseenko, V.A., Mistryukov, A.E., Sergienko, V.S., Zaletov, V.G., Lukov, V.V., Khokhlov, A.V., and Porai-Koshits, M.A., Koord. Khim., 1992, vol. 18, no. 8, p. 859.

    CAS  Google Scholar 

  28. Popov, L.D., Borodkin, S.A., Tupolova, Yu.P., Levchenkov, S.I., Tkachev, V.V., Burlov, A.S., and Tsaturyan, A.A., J. Struct. Chem., 2017, vol. 58, no. 2, p. 366. https://doi.org/10.1134/S0022476617020214

    CAS  Article  Google Scholar 

  29. Gadbois, D.F., Mendelsohn, J.M., Ronsivalli, L.J., Anal. Chem., 1965, vol. 37, no. 13, p. 1776. https://doi.org/10.1021/ac60232a041

    CAS  Article  Google Scholar 

  30. Lederer, E. and Lederer M., Chromatographic, New York: Elsevier, 1953, p. 113.

  31. Wheeler, O.H., Chem. Rev., 1962, vol. 62, no. 3, p. 205. https://doi.org/10.1021/cr60217a002

    CAS  Article  Google Scholar 

  32. Vojinović-Ješić, L.S., Češljević, V.I., Bogdanović, G.A., Leovac, V.M., Mészáros Szécsényi, K., Divjaković, V., and Joksović, M.D., Inorg. Chem. Commun., 2010, vol. 13, no. 9, p. 1085. https://doi.org/10.1016/j.inoche.2010.06.022

    CAS  Article  Google Scholar 

  33. Vojinović-Ješić, L.S., Novaković, S.B., Leovac, V.M., and Cesljevic, V.I., J. Serbian Chem. Soc., 2012, vol. 77, no. 9, p. 1129. https://doi.org/10.2298/JSC120704083V

    CAS  Article  Google Scholar 

  34. Milenković, M., Pevec, A., Turel, I., Milenković, M., Čobeljić, B., Sladić, D., Krstić, N., and Anđelković, K., J. Coord. Chem., 2015, vol. 68, no. 16, p. 2858. https://doi.org/10.1080/00958972.2015.1055260

    CAS  Article  Google Scholar 

  35. Anđelković, K., Milenković, M.R., Pevec, A., Turel, I., Matić, I.Z., Vujčić, M., Sladić, D., Radanović, D., Brađan, G., Belošević, S., and Čobeljić, B., J. Inorg. Biochem., 2017, vol. 174, p. 137. https://doi.org/10.1016/j.jinorgbio.2017.06.011

    CAS  Article  PubMed  Google Scholar 

  36. Čobeljić, B., Pevec, A., Stepanović, S., Spasojević, V., Milenković, M., Turel, I., Swart, M., Gruden-Pavlović, M., Adaila, K., and Anđelković, K., Polyhedron, 2015, vol. 89, p. 271. https://doi.org/10.1016/j.poly.2015.01.024

    CAS  Article  Google Scholar 

  37. Levrand, B., Fieber, W., Lehn, J.-M., and Herrmann, A., Helv. Chim. Acta, 2007, vol. 90, no. 12, p. 2281. https://doi.org/10.1002/hlca.200790237

    CAS  Article  Google Scholar 

  38. Revenko, M.D., Palamarchuk, O.V., Bourosh, P.N., Simonov, Yu.A., Lipkowski, J., and Gdaniec, M., Russ. J. Inorg. Chem., 2009, vol. 54, no. 10, p. 1581. https://doi.org/10.1134/S0036023609100143

    Article  Google Scholar 

  39. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.

  40. Rakitin, Yu.V., Itogi Nauki Tekhniki, 1986, vol. 10, p. 132.

    Google Scholar 

  41. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  42. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., G. Scalmani, V.B., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision A.02., 2009.

  43. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. https://doi.org/10.1021/cr9904009

    CAS  Article  PubMed  Google Scholar 

  44. Zhurko, G.A. and Zhurko, D.A. Chemcraft ver. 1.6 (build 338) http://www.chemcraftprog.com

  45. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., and Puschmann, H., Acta Crystallogr. (A), 2015, vol. 71, no. 1, p. 59. https://doi.org/10.1107/S2053273314022207

    CAS  Article  Google Scholar 

  46. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, no. 2, p. 339. https://doi.org/10.1107/S0021889808042726

    CAS  Article  Google Scholar 

  47. Sheldrick, G.M., Acta Crystallogr. (A), 2007, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930

    CAS  Article  Google Scholar 

  48. Spek, A.L., J. Appl. Crystallogr., 2003, vol. 36, p. 7. https://doi.org/10.1107/S0021889802022112

    CAS  Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 20-33-90173) using the equipment of the Southern Federal University Centers for Collective Usage “Molecular spectroscopy” and “High-output Computations.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Popov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, L.D., Levchenkov, S.I., Lukov, V.V. et al. Acylhydrazone Based on 2-N-Tosylaminobenzaldehyde and Girard T Reagent: Synthesis, Structure, and Coordination Ability. Russ J Gen Chem 91, 90–97 (2021). https://doi.org/10.1134/S1070363221010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221010102

Keywords:

  • hydrazones
  • complex compounds
  • X-ray diffraction analysis
  • quantum-chemical calculations
  • magnetochemistry
  • spectroscopy