Skip to main content
Log in

Tripodal 1,2,3-Triazole Ligands Based on Triphenylphosphine Oxide. Coordination and Extraction Properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New tripodal 1,2,3-triazole ligands based on triphenylphosphine oxide platform with different linker lengths have been synthesized, and their structure has been determined by elemental analysis, 1H, 13C, and 31P NMR spectroscopy, mass spectrometry, and vibrational (IR and Raman) spectroscopy. The coordination and extraction properties of the new ligands have been studied in the complexation with uranyl nitrate and extraction of micro amounts of uranium(VI) from aqueous phase to 1,2-dichloroethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aromí, G., Barrios, L.A., Roubeau, O., and Gamez, P., Coord. Chem. Rev., 2011, vol. 255, p. 485. https://doi.org/10.1016/j.ccr.2010.10.038

    Article  CAS  Google Scholar 

  2. Schulze, B. and Schubert, U.S., Chem. Soc. Rev., 2014, vol. 43, p. 2522. https://doi.org/10.1039/c3cs60386e

    Article  CAS  PubMed  Google Scholar 

  3. Götzke, L., Schaper, G., März, J., Kaden, P., Huittinen, N., Stumpf, T., Kammerlander, K.K.K., Brunner, E., Hahn, P., Mehnert, A., Kersting, B., Henle, T., Lindoy, L.F., Zanoni, G., and Weigand, J.J., Coord. Chem. Rev., 2019, vol. 386, p. 267. https://doi.org/10.1016/j.ccr.2019.01.006

    Article  CAS  Google Scholar 

  4. Kudryavtsev, I.Yu., Baulina, T.V., Pasechnik, M.P., Matveev, S.V., and Matveeva, A.G., Phosphorus, Sulfur Silicon Relat. Elem., 2014, vol. 189, nos. 7–8, p. 946. https://doi.org/10.1080/10426507.2014.904865

    Article  CAS  Google Scholar 

  5. Matveeva, A.G., Kudryavtsev, I.Yu., Pasechnik, M.P., Vologzhanina, A.V., Baulina, T.V., Vavina, A.V., Sukat, G.Ya., Matveev, S.V., Godovikov, I.A., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Polyhedron, 2018, vol. 142, p. 71. https://doi.org/10.1016/j.poly.2017.12.025

    Article  CAS  Google Scholar 

  6. Bykhovskaya, O.V., Matveeva, A.G., Pasechnik, M.P., Vologzhanina, A.V., Matveev, S.V., Kudryavtsev, I.Yu., Baulina, T.V., and Brel, V.K., Russ. J. Gen. Chem., 2019, vol. 89, no. 12, p. 2400. https://doi.org/10.1134/S1070363219120120

    Article  CAS  Google Scholar 

  7. Kudryavtsev, I.Yu., Bykhovskaya, O.V., Matveeva, A.G., Baulina, T.V., Pasechnik, M.P., Matveev, S.V., Vologzhanina, A.V., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Monatsh. Chem., 2020, vol. 151, p. 1705. https://doi.org/10.1007/s00706-020-02702-6

    Article  CAS  Google Scholar 

  8. Jones, M.B. and Gaunt, A.J., Chem. Rev., 2013, vol. 113, p. 1137. https://doi.org/10.1021/cr300198m

    Article  CAS  PubMed  Google Scholar 

  9. Carter, K.P. and Cahill, C.L., Inorg. Chem. Front., 2015, vol. 2, p. 141. https://doi.org/10.1039/c4qi00183d

    Article  CAS  Google Scholar 

  10. Mazzanti, M., Wietzke, R., Pécaut, J.,. Latour, J.-M, Maldivi, P., and Remy, M., Inorg. Chem., 2002, vol. 41, p. 2389. https://doi.org/10.1021/ic010839v

    Article  CAS  PubMed  Google Scholar 

  11. Van Horn, J.D. and Huang, H., Coord. Chem. Rev., 2006, vol. 250, p. 765. https://doi.org/10.1016/j.ccr.2005.09.0

    Article  CAS  Google Scholar 

  12. Urankar, D., Pevec, A., Turel, I., and Košmrlj, J., Cryst. Growth Des., 2010, vol. 10, no. 11, p. 4920. https://doi.org/10.1021/cg100993k

    Article  CAS  Google Scholar 

  13. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Hoboken: Wiley, 2009, 6th ed.

  14. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151. https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  15. Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116. https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  16. Laikov, D.N. and Ustynyuk, Yu.N., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, p. 820. https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  17. Szabó, Z., Toraishi, T., Vallet, V., and Grenthe, I., Coord. Chem. Rev., 2006, vol. 250, p. 784. https://doi.org/10.1016/j.ccr.2005.10.005

    Article  CAS  Google Scholar 

  18. Redmond, M.P., Cornet, S.M., Woodall, S.D., Whittaker, D., Collison, D., Helliwell, M., and Natrajan, L.S., Dalton Trans., 2011, vol. 40, p. 3914. https://doi.org/10.1039/c0dt01464h

    Article  CAS  PubMed  Google Scholar 

  19. Wahu, S., Berthet, J.-C., Thuéry, P., Guillaumont, D., Ephritikhine, M., Guillot, R., Cote, G., and Bresson, C., Eur. J. Inorg. Chem., 2012, vol. 23, p. 3747. https://doi.org/10.1002/ejic.201200243

    Article  CAS  Google Scholar 

  20. Häller, L.J.L., Kaltsoyannis, N., Sarsfield, M.J., May, I., Cornet, S.M., Redmond, M.P., and Helliwell, M., Inorg. Chem., 2007, vol. 46, no. 12, p. 4868. https://doi.org/10.1021/ic062031m

    Article  CAS  PubMed  Google Scholar 

  21. Colasson, B., Le Poul, N., Le Mest, Y., and Reinaud, O., Inorg. Chem., 2011, vol. 50, p. 10985. https://doi.org/10.1021/ic201540x

    Article  CAS  PubMed  Google Scholar 

  22. Das, D., Kannan, S., Maity, D.K., and Drew, M.G.B., Inorg. Chem., 2012, vol. 51, p. 4869. https://doi.org/10.1021/ic300398a

    Article  CAS  PubMed  Google Scholar 

  23. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, New York: Elsevier, 2009, p 743. https://doi.org/10.1134/S0044460X1809024X

  24. Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., and Kiparenko, L.M., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of Quantitative Organoelement Microanalysis), Moscow: Khimiya, 1987.

  25. Kudryavtsev, I.Yu., Bykhovskaya, O.V., Aladzheva, I.M., Baulina, T.V., and Brel, V.K., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2744. https://doi.org/10.1134/S1070363217110366

    Article  CAS  Google Scholar 

  26. Baulina, T.V., Kudryavtsev, I.Yu., Sukat, G.Ya., and Brel, V.K., Russ. J. Gen. Chem., 2018, vol. 88, no. 9, p. 1927. https://doi.org/10.1134/S1070363218090281

    Article  CAS  Google Scholar 

  27. Baulina, T.V., Kudryavtsev, I.Yu., Smolyakov, A.F., Pasechnik, M.P., and Brel, V.K., Heteroat. Chem., 2018, vol. 29, p. e21454. https://doi.org/10.1002/hc.21454

  28. Turanov, A.N., Karandashev, V.K., Baulin, V.E., and Tsvetkov, E.N., Russ. J. Inorg. Chem., 1995, vol. 40, p. 1926.

    CAS  Google Scholar 

Download references

Funding

TThis work was financially supported by the Russian Science Foundation (project no. 20–13–00329). Spectral studies were carried out using the equipment of the Center for Molecular Structure Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Matveeva.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveeva, A.G., Baulina, T.V., Kudryavtsev, I.Y. et al. Tripodal 1,2,3-Triazole Ligands Based on Triphenylphosphine Oxide. Coordination and Extraction Properties. Russ J Gen Chem 90, 2338–2349 (2020). https://doi.org/10.1134/S107036322012018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322012018X

Keywords:

Navigation