Skip to main content
Log in

Electronic Structure and Magnetic Properties of Mixed-Ligand Cobalt Complexes Containing Organogermanium Triangulenes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Computational modeling of cobalt(II) diketonate adducts with o-benzoquinones modified with organogermanium triangular cycles of different size has been performed using the density functional theory method. Energy characteristics of the isomers of the investigated compounds have been found to be determined by the substituents in terminal diketone ligands. Paramagnetism of all the states of the studied molecules has been predicted. The systems, magnetic properties of which can be switched as a result of intramolecular electron transfer between the cobalt ion and the ligand, have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rajput, A., Sharma, A.K., Barman, S.K., Saha, A., and Mukherjee, R., Coord. Chem. Rev., 2020, vol. 414, p. 213240. https://doi.org/10.1016/j.ccr.2020.213240

    Article  CAS  Google Scholar 

  2. Poddel’sky, A.I., Cherkasov, V.K., and Abakumov, G.A., Coord. Chem. Rev., 2009, vol. 253, nos. 3–4, p. 291. https://doi.org/10.1016/j.ccr.2008.02.004

    Article  CAS  Google Scholar 

  3. Chegerev, M.G. and Piskunov, A.V., Russ. J. Coord. Chem., 2018, vol. 44, no. 4, p. 258. https://doi.org/10.1134/S1070328418040036

    Article  CAS  Google Scholar 

  4. Drath, O. and Boskovic, C., Coord. Chem. Rev., 2018, vol. 375, p. 256. https://doi.org/10.1016/j.ccr.2017.11.025

    Article  CAS  Google Scholar 

  5. Witt, A., Heinemann, F.W., Sproules, S., and Khusniyarov, M.M., Chem. Eur. J., 2014, vol. 20, no. 35, p. 11149. https://doi.org/10.1002/chem.201402129

    Article  CAS  PubMed  Google Scholar 

  6. Pierpont, C.G., Inorg. Chem., 2011, vol. 50, no. 20, p. 9766. https://doi.org/10.1021/ic201237d

    Article  CAS  PubMed  Google Scholar 

  7. Dei, A. and Sorace, L., Appl. Magn. Res., 2010, vol. 38, p. 139. https://doi.org/10.1007/s00723-010-0121-4

    Article  CAS  Google Scholar 

  8. Bally, T., Nature Chem., 2010, vol. 2, no. 3, p. 165. https://doi.org/10.1038/nchem.564

    Article  CAS  Google Scholar 

  9. Spin-Crossover Materials: Properties and Applications, Halcrow, M.A., Ed., Chichester: John Wiley & Sons, 2013.

  10. Buchanan, R.M. and Pierpont, C.G., J. Am. Chem. Soc., 1980, vol. 102, no. 15, p. 4951. https://doi.org/10.1021/ja00535a021

    Article  CAS  Google Scholar 

  11. Tezgerevska, T., Alley, K.G., and Boskovic, C., Coord. Chem. Rev., 2014, vol. 268, p. 23. https://doi.org/10.1016/j.ccr.2014.01.014

    Article  CAS  Google Scholar 

  12. Gransbury, G.K., Boulon, M.-E., Petrie, S., Gable, R.W., Mulder, R.J., Sorace, L., Stranger, R., and Boskovic, C., Inorg. Chem., 2019, vol. 58, no. 7, p. 4230. https://doi.org/10.1021/acs.inorgchem.8b03291

    Article  CAS  PubMed  Google Scholar 

  13. Poneti, G., Mannini, M., Cortigiani, B., Poggini, L., Sorace, L., Otero, E., Sainctavit, P., Sessoli, R., and Dei, A., Inorg. Chem., 2013, vol. 52, no. 20, p. 11798. https://doi.org/10.1021/ic4011949

    Article  CAS  PubMed  Google Scholar 

  14. Wu, S.-Q., Liu, M., Gao, K., Kanegawa, S., Horie, Y., Aoyama, G., Okajima, H., Sakamoto, A., Baker, M.L., Huzan, M.S., Bencok, P., Abe, T., Shiota, Y., Yoshizawa, K., Xu, W., Kou, H.-Z., and Sato, O., Nat. Commun., 2020, vol. 11, p. 1992. https://doi.org/10.1038/s41467-020-15988-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gransbury, G.K., Livesay, B.N., Janetzki, J.T., Hay, M.A., Gable, R.W., Shores, M.P., Starikova, A., and Boskovic, C., J. Am. Chem. Soc., 2020, vol. 142, no. 24, p. 10692. https://doi.org/10.1021/jacs.0c01073

    Article  CAS  PubMed  Google Scholar 

  16. Molecular Switches, Feringa, B.L. and Browne, W.R., Eds., Wiley-VCH: Weinheim, 2011.

  17. Demir, S., Jeon, I.-R., Long, J.R., and Harris, T.D., Coord. Chem. Rev., 2015, vol. 289-290, p. 149. https://doi.org/10.1016/j.ccr.2014.10.012

    Article  CAS  Google Scholar 

  18. Sato, O., Nature Chem., 2016, vol. 8, no. 7, p. 644. https://doi.org/10.1038/nchem.2547

    Article  CAS  Google Scholar 

  19. Shultz, D.A., Vostrikova, K.E., Bodnar, S.H., Koo, H.-J., Whangbo, M.-H., Kirk, M.L., Depperman, E.C., and Kampf, J.W., J. Am. Chem. Soc., 2003, vol. 125, no. 6, p. 1607. https://doi.org/10.1021/ja020715x

    Article  CAS  PubMed  Google Scholar 

  20. Kirk, M.L. and Shultz, D.A., Coord. Chem. Rev., 2013, vol. 257, no. 1, p. 218. https://doi.org/10.1016/j.ccr.2012.07.007

    Article  CAS  Google Scholar 

  21. Tichnell, C.R., Shultz, D.A., Popescu, C.V., Sokirniy, I., and Boyle, P.D., Inorg. Chem., 2015, vol. 54, no. 9, p. 4466. https://doi.org/10.1021/acs.inorgchem.5b00298

    Article  CAS  PubMed  Google Scholar 

  22. Protasenko, N.A., Poddel’sky, A.I., Bogomyakov, A.S., Fukin, G.K., and Cherkasov, V.K., Inorg. Chem., 2015, vol. 54, no. 13, p. 6078. https://doi.org/10.1021/acs.inorgchem.5b00912

    Article  CAS  PubMed  Google Scholar 

  23. Protasenko, N.A., Poddel’sky, A.I., Bogomyakov, A.S., Starikov, A.G., Smolyaninov, I.V., Berberova, N.T., Fukin, G.K., and Cherkasov, V.K., Inorg. Chim. Acta, 2019, vol. 489, p. 1. https://doi.org/10.1016/j.ica.2019.02.002

    Article  CAS  Google Scholar 

  24. Bubnov, M., Cherkasova, A., Teplova, I., Kopylova, E., Fukin, G., Samsonov, M., Bogomyakov, A., Fokin, S., Romanenko, G., Cherkasov, V., and Ovcharenko, V., Polyhedron, 2016, vol. 119, p. 317. https://doi.org/10.1016/j.poly.2016.09.020

    Article  CAS  Google Scholar 

  25. Zolotukhin, A.A., Bubnov, M.P., Arapova, A.V., Fukin, G.K., Rumyantcev, R.V., Bogomyakov, A.S., Knyazev, A.V., and Cherkasov, V.K., Inorg. Chem., 2017, vol. 56, no. 24, p. 14751. https://doi.org/10.1021/acs.inorgchem.7b02597

    Article  CAS  PubMed  Google Scholar 

  26. Bubnov, M., Teplova, I., Kozhanov, K., Rumyantcev, R., Fukin, G., Bogomyakov, A., and Cherkasov, V., Inorg. Chim. Acta, 2019, vol. 486, p. 113. https://doi.org/10.1016/j.ica.2018.10.024

    Article  CAS  Google Scholar 

  27. Starikov, A.G., Starikova, A.A., Minyaev, R.M., Minkin, V.I., and Boldyrev, A.I., Chem. Phys. Lett., 2020, vol. 740, p. 137073. https://doi.org/10.1016/j.cplett.2019.137073

    Article  CAS  Google Scholar 

  28. Starikov, A.G., Starikova, A.A., and Minkin, V.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 4, p. 859. https://doi.org/10.1134/S1070363216040174

    Article  CAS  Google Scholar 

  29. Starikov, A.G., Starikova, A.A., and Minkin, V.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p. 98. https://doi.org/10.1134/S1070363217010169

    Article  CAS  Google Scholar 

  30. Starikova, A.A. and Minkin, V.I., Russ. Chem. Rev., 2018, vol. 87, no. 11, p. 1049. https://doi.org/10.1070/RCR4837

    Article  CAS  Google Scholar 

  31. Ovchinnikov, A.A., Theor. Chem. Acc., 1978, vol. 47, p. 297. https://doi.org/10.1007/BF00549259

    Article  CAS  Google Scholar 

  32. Stable Radicals: Fundamental and Applied Aspects of Odd-Electron Compounds, Hicks, R., Ed., Wiley: Chichester, 2011, 588 p.

  33. Gapurenko, O.A., Minyaev, R.M., Starikov, A.G., and Minkin, V.I., Dokl. Chem., 2013, vol. 448, no. 1, p. 23. https://doi.org/10.1134/S0012500813010072

    Article  CAS  Google Scholar 

  34. Gapurenko, O.A., Starikov, A.G., Minyaev, R.M., and Minkin, V.I., J. Comput. Chem., 2015, vol. 36, no. 29, p. 2193. https://doi.org/10.1002/jcc.24199

    Article  CAS  PubMed  Google Scholar 

  35. Itkis, M.E., Chi, X., Cordes, A.W., and Haddon, R.C., Science, 2002, vol. 296, no. 5572, p. 1443. https://doi.org/10.1126/science.1071372

    Article  CAS  PubMed  Google Scholar 

  36. Pal, S.K., Itkis, M.E., Tham, F.S., Reed, R.W., Oakley, R.T., and Haddon, R.C., Science, 2005, vol. 309, no. 5732, p. 281. https://doi.org/10.1126/science.1112446

    Article  CAS  PubMed  Google Scholar 

  37. Train, C., Norel, L., and Baumgarten, M., Coord. Chem. Rev., 2009, vol. 253, nos. 19–20, p. 2342. https://doi.org/10.1016/j.ccr.2008.10.004

    Article  CAS  Google Scholar 

  38. Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., Arifuku, K., Sato, K., and Takui, T., Nat. Mater., 2011, vol. 10, p. 947. https://doi.org/10.1038/nmat3142

    Article  CAS  PubMed  Google Scholar 

  39. Nishida, S., Kawai, J., Moriguchi, M., Ohba, T., Haneda, N., Fukui, K., Fuyuhiro, A., Shiomi, D., Sato, K., Takui, T., Nakasuji, K., and Morita, Y., Chem. Eur. J., 2013, vol. 19, no. 36, p. 11904. https://doi.org/10.1002/chem.201301783

    Article  CAS  PubMed  Google Scholar 

  40. Baumgarten, M., Phys. Status Solidi (B), 2019, vol. 256, no. 9, p. 1800642. https://doi.org/10.1002/pssb.201800642

    Article  CAS  Google Scholar 

  41. Melle-Franco, M., Chem. Commun., 2015, vol. 51, no. 25, p. 5387. https://doi.org/10.1039/C5CC01276G

    Article  CAS  Google Scholar 

  42. Sharma, V., Som, N., Dabhi, S.D., and Jha, P.K., Chem. Select., 2018, vol. 3, no. 8, p. 2390. https://doi.org/10.1002/slct.201703054

    Article  CAS  Google Scholar 

  43. Minkin, V.I., Starikov, A.G., Starikova, A.A., Gapurenko, O.A., Minyaev, R.M., and Boldyrev, A.I., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 3, p. 1288. https://doi.org/10.1039/C9CP05922A

    Article  CAS  PubMed  Google Scholar 

  44. Baumgarten, M. and Karabunarliev, S., Chem. Phys., 1999, vol. 244, no. 1, p. 35. https://doi.org/10.1016/S0301-0104(99)00090-7

    Article  CAS  Google Scholar 

  45. Starikova, A.A., Minyaev, R.M., and Minkin, V.I., Russ. Chem. Bull., 2014, vol. 63, no. 4, p. 812. https://doi.org/10.1007/s11172-014-0514-x

    Article  CAS  Google Scholar 

  46. Starikova, A.A., Starikov, A.G., and Minkin, V.I., Comput. Theor. Chem., 2016, vol. 1076, p. 74. https://doi.org/10.1016/j.comptc.2015.12.012

    Article  CAS  Google Scholar 

  47. Sasamori, T. and Tokitoh N., in Encyclopedia of Inorganic Chemistry, Scott, R.A., Ed., New York: John Wiley & Sons, Ltd, 2006, p. 1. https://doi.org/10.1002/0470862106.ia301

  48. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

  49. Sato, D., Shiota, Y., Juhasz, G., and Yoshizawa, K., J. Phys. Chem. (A), 2010, vol. 114, no. 49, p. 12928. https://doi.org/10.1021/jp107391x

    Article  CAS  Google Scholar 

  50. Biswas, M.K., Patra, S.C., Maity, A.N., Ke, S.-C., Weyhermüller, T., and Ghosh, P., Dalton Trans., 2013, vol. 42, no. 18, p. 6538. https://doi.org/10.1039/C3DT00038A

    Article  CAS  PubMed  Google Scholar 

  51. Minkin, V.I., Starikov, A.G., and Starikova, A.A., Pure Appl. Chem., 2018, vol. 90, no. 5, p. 811. https://doi.org/10.1515/pac-2017-0803

    Article  CAS  Google Scholar 

  52. Piskunov, A.V., Pashanova, K.I., Bogomyakov, A.S., Smolyaninov, I.V., Starikov, A.G., and Fukin, G.K., Dalton Trans., 2018, vol. 47, no. 42, p. 15049. https://doi.org/10.1039/C8DT02733A

    Article  CAS  PubMed  Google Scholar 

  53. Ershova, I.V., Smolyaninov, I.V., Bogomyakov, A.S., Fedin, M.V., Starikov, A.G., Cherkasov, A.V., Fukin, G.K., and Piskunov, A.V., Dalton Trans., 2019, vol. 48, no. 28, p. 10723. https://doi.org/10.1039/C9DT01424A

    Article  CAS  PubMed  Google Scholar 

  54. Noodleman, L., J. Chem. Phys., 1981, vol. 74, p. 5737. https://doi.org/10.1063/1.440939

    Article  CAS  Google Scholar 

  55. Shoji, M., Koizumi, K., Kitagawa, Y., Kawakami, T., Yamanaka, S., Okumura, M., and Yamaguchi, K., Chem. Phys. Lett., 2006, vol. 432, no. 1, p. 343. https://doi.org/10.1016/j.cplett.2006.10.023

    Article  CAS  Google Scholar 

  56. Chemcraft. Version 1.8, 2014. http://www.chemcraftprog.com

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of Russian Federation (State assignment in the field of scientific activity, project no. 0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chegerev, M.G., Starikova, A.A., Starikov, A.G. et al. Electronic Structure and Magnetic Properties of Mixed-Ligand Cobalt Complexes Containing Organogermanium Triangulenes. Russ J Gen Chem 90, 2312–2322 (2020). https://doi.org/10.1134/S1070363220120142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220120142

Keywords:

Navigation