Skip to main content
Log in

Stabilization of Double-Stranded Poly(A)·Poly(U) with ZnTMPyP4 Metalloporphyrin in Aqueous Solution

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

UV-Vis absorption spectra of aqueous solutions containing both metalloporphyrin Zn(X)TMPyP4 [H2TMPyP4—5,10,15,20-tetrakis(1-methylpyridin-4-yl)-21H,23H-porphyrin] and synthetic polyadenylic-polyuridylic acid Poly(A)·Poly(U) over the temperature range from 20 to 70°C (pH = 7.0, I = 0.15 M.) have been analyzed. Deconvolution of the spectrometric data matrix, without postulating a physicochemical equilibrium model, has allowed estimation of the contribution of the Poly(A)·Poly(U)·(ZnTMPyP4)n complex to the total change in the spectra. Chemometric analysis has shown an increase in the melting temperature of this ternary complex by 9.4°С compared to pure polyribonucleotide, which indicates the stabilization of the bonds between nucleic bases in the Poly(A)·Poly(U) polynucleotide under the influence of bound porphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kim, Y.-H., Lee, C., Kim, S.K., and Jeoung, S.C., Biophys. Chem., 2014, vols. 190–191, p. 17. https://doi.org/10.1016/j.bpc.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  2. Alberti, E., Zampakou, M., and Donghi, D., J. Inorg. Biochem., 2016, vol. 163, p. 278. https://doi.org/10.1016/j.jinorgbio.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  3. Choi, J.K., D’Urso, A., and Balaz, M., J. Inorg. Biochem., 2013, vol. 127, p. 1. https://doi.org/10.1016/j.jinorgbio.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y.R., Gong, L., Park, J., Jang, Y.J., Kim, J., and Kim, S.K., J. Inorg. Biochem., 2012, vol. 116, p. 2330. https://doi.org/10.1021/jp212291r

    Article  CAS  Google Scholar 

  5. Gong, L., Bae, I., and Kim, S.K., J. Phys. Chem. (B), 2012, vol. 116, p. 12510 https://doi.org/10.1021/jp3081063

    Article  CAS  Google Scholar 

  6. Gong, L., Jang, Y.J., Kim, J., and Kim, S.K., J. Phys. Chem. (B) , 2012, vol. 116, p. 9619. https://doi.org/10.1021/jp3041346

    Article  CAS  Google Scholar 

  7. Zhou, Z.-X., Gao, F., Chen, X., Tian, X.-J., and Ji, L.-N., Inorg. Chem., 2014, vol. 53, p. 10015. https://doi.org/10.1021/ic501337c

    Article  CAS  PubMed  Google Scholar 

  8. Ghazaryan, A.A., Dalyan, Y.B., Haroutiunian, S.G., Tikhomirova, A., Taulier, N., Wells, J.W., and Chalikian, T.V., J. Am. Chem. Soc., 2006, vol. 128, p. 1914. https://doi.org/10.1021/ja054070n

    Article  CAS  PubMed  Google Scholar 

  9. Tolstykh, G. and Kudrev, A., J. Mol. Struct., 2015, vol. 1098, p. 342. https://doi.org/10.1016/j.molstruc.2015.06.031

    Article  CAS  Google Scholar 

  10. Sabharwal, N.C., Mendoza, O., Nicoludis, J.M., Ruan, T., Mergny, J.-L., and Yatsunyk, L.A., J. Biol. Inorg. Chem., 2016, vol. 21, p. 227. https://doi.org/10.1007/s00775-015-1325-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Briggs, B.N., Gaier, A.J., Fanwick, P.E., Dogutan, D.K., and McMillin, D.R., Biochem., 2012, vol. 51, p. 7496. https://doi.org/10.1021/bi300828z

    Article  CAS  Google Scholar 

  12. Uno, T., Aoki, K., Shikimi, T., Hiranuma, Y., Tomisugi, Y., and Ishikawa, Y., Biochem., 2002, vol. 41, p. 13059. https://doi.org/10.1021/bi026139z

    Article  CAS  Google Scholar 

  13. Qin, T., Liu, K., Song, D., Yang, C., Zhao, H., and Su, H., Int. J. Mol. Sci., 2018, vol. 19, p. 1071. https://doi.org/10.3390/ijms19041071

    Article  CAS  PubMed Central  Google Scholar 

  14. Tolstykh, G., Sizov, V., and Kudrev, A., J. Inorg. Biochem., 2016, vol. 161, p. 83. https://doi.org/10.1016/j.jinorgbio.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Pan, J. and Zhang, S., J. Biol. Inorg. Chem., 2009, vol. 14, p. 401. https://doi.org/10.1007/s00775-008-0457-5

    Article  CAS  PubMed  Google Scholar 

  16. De Clercq, E., Torrence, P., De Somer, V., and Witkop, B., J. Biol. Chem., 1975, vol. 250, p. 2521.

    Article  CAS  Google Scholar 

  17. Thang, M.N., Guschlbauer, W., Pathol. Biol., 1992, vol. 40, p. 1006.

    CAS  PubMed  Google Scholar 

  18. De Clercq, E., Top. Curr. Chem., 1974, vol. 52, p. 173. https://doi.org/10.1007/3-540-06873-2_17

    Article  CAS  PubMed  Google Scholar 

  19. Saenger, W., Principles of Nucleic Acid Structure, New York: Springer-Verlag, 1988.

  20. Barton, J.K. and Lippard, S.J., Biochem., 1979, vol. 18, p. 2661.

    Article  CAS  Google Scholar 

  21. Ray, A., Kumar, G.S., Das, S., and Maiti, M., Biochem., 1999, vol. 38, p. 6239.

    Article  CAS  Google Scholar 

  22. He, X., Li, J., Zhanga, H., and Tan, L., Mol. BioSyst., 2014, vol. 10, p. 2552. https://doi.org/10.1039/c4mb00304g

    Article  CAS  PubMed  Google Scholar 

  23. Tan, L.-F., Liu, J., Shen, J.-L., Liu, X.-H., Zeng, L.-L., and Jin, L.-H., Inorg. Chem., 2012, vol. 51, p. 4417. https://doi.org/10.1021/ic300093h

    Article  CAS  PubMed  Google Scholar 

  24. Li, J., Sun, Y., Xie, L., He, X., and Tan, L., J. Inorg. Biochem., 2015, vol. 143, p. 56. https://doi.org/10.1016/j.jinorgbio.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., Sun, Y., Zhu, Z., Zhao, H., and Tan, L., J. Inorg. Biochem., 2017, vol. 161, p. 128. https://doi.org/10.1016/j.jinorgbio.2016.04.024

    Article  CAS  Google Scholar 

  26. Ivanov, M., Sizov, V., and Kudrev, A., J. Mol. Struct., 2020, vol. 1202, p. 127365. https://doi.org/10.1016/j.molstruc.2019.127365

    Article  CAS  Google Scholar 

  27. Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006 p. 421.

  28. Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006, p. 453.

  29. Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006, p. 453. http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/down_mcrt.html

  30. Gargallo, R., Eritja, R., and Kudrev, A., Russ. J. Gen. Chem., 2010, vol. 80, p. 485. https://doi.org/10.1134/S1070363210030205

    Article  CAS  Google Scholar 

  31. Kudrev, A.G., Russ. J. Gen. Chem., 2017, vol. 87, p. 788. https://doi.org/10.1134/S107036321704020X

    Article  CAS  Google Scholar 

  32. Kudrev, A., Biopolymers, 2013, vol. 99, p. 621. https://doi.org/10.1002/bip.22227

    Article  CAS  PubMed  Google Scholar 

  33. Jollife, I.T., Principal Component Analysis, Berlin: Springer Verlag, 2002.

  34. Windig, W. and Guilment, J., Anal. Chem., 1991, vol. 63, p. 1425. https://doi.org/10.1021/ac00014a016

    Article  CAS  Google Scholar 

  35. Golub, G.H., Van Loan, C.F., Matrix Computations, London: The Johns Hopkins Univ. Press, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kudrev.

Ethics declarations

No conflict of interest was declared by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudrev, A.G. Stabilization of Double-Stranded Poly(A)·Poly(U) with ZnTMPyP4 Metalloporphyrin in Aqueous Solution. Russ J Gen Chem 90, 2281–2288 (2020). https://doi.org/10.1134/S1070363220120105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220120105

Keywords:

Navigation