Skip to main content
Log in

Synthesis of New Drug-Like Piperazine-2,5-diones by the Ugi/Tandem Process Catalyzed by TMSOTf and Their Molecular Docking

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new four-components post-Ugi transformation process has been studied. It provides an efficient access to biologically active piperazine-2,5-dione derivatives in high yield. The framework of piperazine-2,5-dione derivatives has been constructed by a tandem-decarboxylation of α-keto carboxylic acids promoted by a green catalyst trimethylsilyl trifluoromethane sulfonate (TMSOTf). Molecular docking study of piperazine-2,5-dione derivatives has been performed with various anticancer target proteins: human androgen receptor (AR) (PDB ID: 1E3G), human steroidogenic cytochrome P450 17A1 (PDB ID: 4NKV), epidermal growth factor receptor 2 HER2 (PDB ID: 3PP0), and estrogen receptor alpha (ERα) (PDB ID: 1A52), and has indicated their possible efficient interactions via hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ressurreição, S.M., Delatouche, R., Gennari, C., and Piarulli, U., Eur. J. Org. Chem., 2011, vol. 2011, p. 217. https://doi.org/10.1002/ejoc.201001330

    Article  CAS  Google Scholar 

  2. Yamazaki, Y., Sumikura, M., Masuda, Y., Hayashi, Y., Yasui, H., Kiso, Y., Chinen, T., Usui, T., Yakushiji, F., Potts, B., Neuteboom, S., Palladino, M., Lloyd, G.K., and Hayashi, Y., Bioorg. Med. Chem., 2012, vol. 20, p. 4279. https://doi.org/10.1016/j.bmc.2012.05.059.

  3. Zhao, S., Smith, K.S., Deveau, A.M., Dieckhaus, C.M., Johnson, M.A., Macdonald, T.L., and Cook, J.M., J. Med. Chem., 2002, vol. 45, p. 1559. https://doi.org/10.1021/jm0155953

  4. Hernández-Vázquez, E., and Miranda, L.D., Org. Biomo. Chem., 2016, vol. 14, p. 4875. https://doi.org/10.1039/C6OB00431H

  5. González, J.F., Ortín, I., de la Cuesta, E., and Menéndez, J.C., Chem. Soc. Rev., 2012, vol. 41, p. 6902. https://doi.org/10.1039/C2CS35158G

    Article  PubMed  Google Scholar 

  6. Jassem, A.M., Almashal, F.A.K., Mohammed, M.Q., and Jabir, H.A.S., SN. Appl. Sci., 2020, vol. 2, p. 359. https://doi.org/10.1007/s42452-020-2165-x

  7. Jassem, A.M., Almashal, F.A.K., and Jaber, H.A.S., Russ. J. Gen. Chem., 2020, vol. 90, p. 895. https://doi.org/10.1134/S1070363220050230

    Article  CAS  Google Scholar 

  8. Jassem, A.M., Al-Ajely, H.M., Almashal, F.A.K., and Chen, B., Russ. J. Gen. Chem., 2019, vol. 89, p. 2562. https://doi.org/10.1134/S1070363219120363

    Article  CAS  Google Scholar 

  9. Ribelin, T.P., Judd, A.S., Akritopoulou-Zanze, I., Henry, R.F., Cross, J.L., Whittern, D.N., and Djuric, S.W., Org. Lett., 2007, vol. 9, p. 5119. https://doi.org/10.1021/ol7023373

    Article  CAS  PubMed  Google Scholar 

  10. Marcaccini, S., Pepino, R., Pozo, M.C., Basurto, S., Garcı́a-Valverde, M., and Torroba, T., Tetrahedron. Lett., 2004, vol. 45, p. 3999. https://doi.org/10.1016/j.tetlet.2004.03.184

  11. Tyagi, V., Khan, S., and Chauhan, P.M., Synlett., 2013, vol. 24, p. 1291. https://doi.org/10.1055/s-0033-1338707

    Article  CAS  Google Scholar 

  12. Wright, D.L., Robotham, C.V., and Aboud, K., Tetrahedron Lett., 2002, vol. 43, p. 943. https://doi.org/10.1016/S0040-4039(01)02299-7

  13. Corres, N., Delgado, J.J., García-Valverde, M., Marcaccini, S., Rodríguez, T., Rojo, J., and Torroba, T., Tetrahedron., 2008, vol. 64, p. 2225. https://doi.org/10.1016/j.tet.2007.12.028

    Article  CAS  Google Scholar 

  14. Xu, Z., De Moliner, F., Cappelli, A.P., and Hulme, C., Org. Lett. 2013, vol. 15, p. 2738. https://doi.org/10.1021/ol401068u

  15. Azuaje, J., Pérez-Rubio, J.M., Yaziji, V., El Maatougui, A., González-Gomez, J.C., Sánchez-Pedregal, V.M., NavarroVázquez, A., Masaguer, C.F., Teijeira, M., and Sotelo, E., J. Org. Chem., 2015, vol. 80, p. 1533. https://doi.org/10.1021/jo502382q

  16. Polindara-García, L.A., and Vazquez, A., Org. Biomo. Chem., 2014, vol. 12, p. 7068. https://doi.org/10.1039/C4OB00767K

  17. VenkataPrasad, J., Krishnamurthy, S., Moriguchi, T., and Tsuge, A., New. J. Chem., 2017, vol. 41, p. 97. https://doi.org/10.1039/C6NJ02569B.

  18. Miranda, L.D., and Hernández-Vázquez, E., J. Org. Chem., 2015, vol. 80, p. 10611. https://doi.org/10.1021/acs.joc.5b01742

  19. Yan, Y.M., Gao, Y., and Ding, M.W., Tetrahedron., 2016, vol. 72, p. 5548. https://doi.org/10.1016/j.tet.2016.07.048

    Article  CAS  Google Scholar 

  20. Li, Z., Kumar, A., Sharma, S.K., Parmar, V.S., and Van der Eycken, E.V., Tetrahedron., 2015, vol. 71, p. 3333. https://doi.org/10.1016/j.tet.2015.03.103

    Article  CAS  Google Scholar 

  21. Jassem, A.M., Dhumad, A.M., Almashal, F.A., and Alshawi, J.M., Med. Chem. Res., 2020, vol. 29, p. 1067. https://doi.org/10.1007/s00044-020-02546-z.

    Article  CAS  Google Scholar 

  22. Lee, C., Yang, W., and Parr, R.G., Physical. Rev. B., 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Trott, O., and Olson, A.J., J. Comput. Chem., 2010, vol. 31, p. 455. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, S., Chan, H.S., and Hu, Z., Wiley. Inter. Rev: Comput. Mole. Sci., 2017, vol. 7, p. 1298. https://doi.org/10.1002/wcms.1298

  25. Capaia, M., Granata, I., Guarracino, M., Petretto, A., Inglese, E., Cattrini, C., Ferrari, N., Boccardo, F., and Barboro, P., Inter.J. Mole. Sci., 2018, vol. 19, p. 1920. https://doi.org/10.3390/ijms19071920

Download references

ACKNOWLEDGMENTS

Authors gratefully thank Leicester University, UK for performing 1H, 13C NMR, FTIR, HRMS spectra, and HPLC analysis.

Funding

This work was financially supported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Jassem.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassem, A.M., Dhumad, A.M. & Almashal, F.A.K. Synthesis of New Drug-Like Piperazine-2,5-diones by the Ugi/Tandem Process Catalyzed by TMSOTf and Their Molecular Docking. Russ J Gen Chem 90, 2181–2188 (2020). https://doi.org/10.1134/S1070363220110262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220110262

Keywords:

Navigation