Skip to main content
Log in

Simultaneous Formation of Cage and Spirane Pentaalkoxyphosphoranes in Reaction of 5,5-Dimethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphosphorinane with Hexafluoroacetone

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of hexafluoroacetone with 5,5-dimethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphosphorinane occurs in two simultaneous directions: through the formation of cage phosphorane and spirophosphorane—1,1-(2,2-dimethylpropylenedioxy)-4,5-diphenyl-3,3-bis(trifluoromethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.11.4]heptane and 2-(2,2-dimethylpropylenedioxy)-2-hexafluoroisopropoxy-4,5-diphenyl-1,3,2-dioxaphospholene, respectively. The latter was obtained by authentic synthesis from 2-hexafluoroisopropoxy-5,5-dimethyl-1,3,2-dioxaphosphorinane and benzil. The mild hydrolysis of the compounds obtained leads to the formation of cyclic phosphates. The structure of the obtained compounds was determined by the NMR and mass spectrometry methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Scheme
Fig. 2.
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Liu, L.-J., Wang, W.-M., Yao, L., Meng, F.-J., Sun, Y.-M., Xu, H., Xu, Z.-Y., Li, Q., Zhao, C.-Q., and Han, L.-B., J. Org. Chem., 2017, vol. 82, no. 11, p. 11990. https://doi.org/10.1021/acs.joc.7b01326

    Article  CAS  PubMed  Google Scholar 

  2. Kolodiazhnyi, O.I., Pure. Appl. Chem., 2018, vol. 91, no. 1, p. 43. https://doi.org/10.1515/pac-2018-0807

    Article  CAS  Google Scholar 

  3. Yonker, N.J.D, and Webster, C.E., Biochem., 2015, vol. 54, no. 27, p. 4236. https://doi.org/10.1021/acs.biochem.5b00396

    Article  CAS  Google Scholar 

  4. Harris, M.E., Piccirilli, J.A., and York, D.M., Biochim. Biophys. Acta, 2015, vol. 1854, no. 11, p. 1801. https://doi.org/10.1016/j.bbapap.2015.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattioli, E.J., Bottoni, A., and Calvaresi, M., J. Chem. Inform. Model., 2019, vol. 59, no. 4, p. 1547. https://doi.org/10.1021/acs.jcim.8b00815

    Article  CAS  Google Scholar 

  6. Aboelnga, M.M. and Wetmore, S.D., J. Am. Chem. Soc., 2019, vol. 141, no. 21, p. 8646. https://doi.org/10.1021/jacs.9b03986

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, G., Jayasinghe-Arachchige, V.M., Hu, Q., Schenk, G., and Prabhakar, R., ACS Catal., 2020, vol. 10, no. 6, p. 3684. https://doi.org/10.1021/acscatal.9b04847

    Article  CAS  Google Scholar 

  8. Borišek, J. and Magistrato, A., ACS Catal., 2020, vol. 10, no. 9, p. 5328. https://doi.org/10.1021/acscatal.0c00390

    Article  CAS  Google Scholar 

  9. Bevilacqua, P.C., Harris, M.E., Piccirilli, J.A., Gaines, C., Ganguly, A., Kostenbader, K., Ekesan, S., and York, D.M., ACS Chem. Biol., 2019, vol. 14, no. 6, p. 1068. https://doi.org/10.1021/acschembio.9b00202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Procházková, E., Navrátil, R., Janeba, Z., Roithová, J., and Baszczyňski, O., Org. Biomol. Chem., 2019, vol. 17, no. 2, p. 315. https://doi.org/10.1039/c8ob02870b

    Article  CAS  PubMed  Google Scholar 

  11. Chagas, M.A., Pereira, E.S., Da Silva, J.C.S., and Rocha, W.R., J. Mol. Model., 2018, vol. 24, p. 259. https://doi.org/10.1007/s00894-018-3798-1

    Article  CAS  PubMed  Google Scholar 

  12. Pereira, E.S., Da Silva, J.C.S., Brandao, T.A.S., and Rocha, W.R., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 27, p. 18255. https://doi.org/10.1039/c6cp01536k

    Article  CAS  PubMed  Google Scholar 

  13. Pereira, M.S., Murta, B., Oliveira, T.C.F., Manfredi, A.M., Nome, F., Hengge, A.C., and Brandao, T.A.S., J. Org. Chem., 2016, vol. 81, no. 19, p. 8663. https://doi.org/10.1021/acs.joc.6b01358

    Article  CAS  PubMed  Google Scholar 

  14. Bigley, A.N., Narindoshvili, T., Xiang, D.F., and Raushel, F.M., Biochem., 2020, vol. 59, no. 12, p. 1273. https://doi.org/10.1021/acs.biochem.0c00089

    Article  CAS  Google Scholar 

  15. Bigley, A.N., Xiang, D.F., Narindoshvili, T., Burgert, C.W., Hengge, A.C., and Raushel, F.M., Biochem., 2019, vol. 58, no. 9, p. 1246. https://doi.org/10.1021/acs.biochem.9b00041

    Article  CAS  Google Scholar 

  16. Holthausen, M.H., Hiranandani, R.R., and Stephan, D.W., Chem. Sci., 2015, vol. 6, no. 3, p. 2016. https://doi.org/10.1039/c5sc00051c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Firth, K.F., Mobus, J., and Stephan, D.W., Chem. Commun., 2016, vol. 52, no. 97, p. 13967. https://doi.org/10.1039/c6cc08561j

    Article  CAS  Google Scholar 

  18. Mallov, I., Johnstone, T.C., Burns, D.C., and Stephan, D.W., Chem. Commun., 2017, vol. 53, no. 54, p. 7529. https://doi.org/10.1039/c7cc04057a

    Article  CAS  Google Scholar 

  19. Kostenko, A. and Dobrovetsky, R., Eur. J. Org. Chem., 2019, nos. 2–3, p. 318. https://doi.org/10.1002/ejoc.201800823

    Article  CAS  Google Scholar 

  20. Süsse, L., LaFortune, J.H.W., Stephan, D.W., and Oestreich, M., Organomet., 2019, vol. 38, no. 3, p. 712. https://doi.org/10.1021/acs.organomet.8b00912

    Article  CAS  Google Scholar 

  21. Li, G., Nykaza, T.V., Cooper, J.C., Ramirez, A., Luzung, M.R., and Radosevich, A.T., J. Am. Chem. Soc., 2020, vol. 142, no. 14, p. 6786. https://doi.org/10.1021/jacs.0c01666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bittner, B., Koppe, K., Frank, W., and Ignat’ev, N., J. Fluor. Chem., 2016, vol. 182, p. 22. https://doi.org/10.1016/j.jfluchem.2015.11.007

    Article  CAS  Google Scholar 

  23. Bader, J, Neumann, B., Stammler, H.-G., Ignat’ev, N., and Hoge, B., Chem. Eur. J., 2018, vol. 24, no. 27, p. 6975. https://doi.org/10.1002/chem.201800682

    Article  CAS  PubMed  Google Scholar 

  24. Krasowska, D., Pokora-Sobczak, P., Jasiak, A., and Drabowicz, J., Adv. Heterocycl. Chem., 2017, vol. 124, p. 175. https://doi.org/10.1016/bs.aihch.2017.06.002

    Article  CAS  Google Scholar 

  25. Hazin, K. and Gates, D.P., Canad. J. Chem., 2018, vol. 96, no. 6, p. 526. https://doi.org/10.1139/cjc-2017-0648

    Article  CAS  Google Scholar 

  26. Bader, J., Neumann, B., Stammler, H.-G., Ignat’ev, N., and Hoge, B., J. Fluor. Chem., 2018, vol. 207, p. 12. https://doi.org/10.1016/j.jfluchem.2017.12.015

    Article  CAS  Google Scholar 

  27. Marczenko, K.M., Johnson, C.-L., and Chitnis, S.S., Chem. Eur. J., 2019, vol. 25, no. 37, p. 8865. https://doi.org/10.1002/chem.201901333

    Article  CAS  PubMed  Google Scholar 

  28. Sun, C., Cao, S., Zhao, P., Ma, W., Guo, Y., and Zhao, Y., Tetrahedron Lett., 2018, vol. 59, no. 43, p. 3833. https://doi.org/10.1016/j.tetlet.2018.09.020

    Article  CAS  Google Scholar 

  29. Ma, W., Dai, W., Liu, Q., Chen, Y., Zhao, Y., and Cao, S., Tetrahedron, 2020, vol. 76, no. 6, p. 130886. https://doi.org/10.1016/j.tet.2019.130886

    Article  CAS  Google Scholar 

  30. Breidung, J. and Thiel, W., J. Phys. Chem. (A), 2019, vol. 123, no. 26, p. 5600. https://doi.org/10.1021/acs.jpca.9b04406

    Article  CAS  Google Scholar 

  31. Brand, A. and Uhl, W., Chem. Eur. J., 2019, vol. 25, no. 6, p. 1391. https://doi.org/10.1002/chem.201803331

    Article  CAS  PubMed  Google Scholar 

  32. Solyntjes, S., Neumann, B., Stammler, H.-G., Ignat’ev, N., and Hoge, B., Eur. J. Inorg. Chem., 2016, no. 25, p. 3999. https://doi.org/10.1002/ejic.201600539

    Article  CAS  Google Scholar 

  33. Pistner, A.J., Moon, H.W., Silakov, A., Yennawar, H.P., and Radosevich, A.T., Inorg. Chem., 2017, vol. 56, no. 15, p. 8661. https://doi.org/10.1021/acs.inorgchem.7b00657

    Article  CAS  PubMed  Google Scholar 

  34. Hazin, K., Patrick, B.O., and Gates, D.P., Inorg. Chem., 2019, vol. 58, no. 1 P. 188. https://doi.org/10.1021/acs.inorgchem.8b02174

  35. Morsdorf, J.-M., Wadepohl, H., and Ballmann, J., Inorg. Chem., 2019, vol. 58, no. 5, p. 3502. https://doi.org/10.1021/acs.inorgchem.9b00076

    Article  CAS  PubMed  Google Scholar 

  36. Fujimoto, H., Kusano, M., Kodama, T., and Tobisu, M., Org. Lett., 2020, vol. 22, no. 6, p. 2293. https://doi.org/10.1021/acs.orglett.0c00489

    Article  CAS  PubMed  Google Scholar 

  37. Li, B., Hagenbach, A., and Abram, U., Inorg. Chem., 2019, vol. 58, no. 12, p. 7925. https://doi.org/10.1021/acs.inorgchem.9b00635

    Article  CAS  PubMed  Google Scholar 

  38. Perez-Ramirez, M., Agyekum, I., and Otoo, B., ChemBioChem, 2020, vol. 21, no. 4, p. 473. https://doi.org/10.1002/cbic.201900328

    Article  CAS  PubMed  Google Scholar 

  39. Abdrakhmanova, L.M., Mironov, V.F., Baronova, T.A., Dimukhametov, M.N., Krivolapov, D.B., Litvinov, I.A., Balandina, A.A., Latypov, Sh.K., and Konovalov, A.I., Mendeleev Commun., 2006, vol. 16, no. 6, p. 320. https://doi.org/10.1070/MC2006v016n06ABEH002414

    Article  CAS  Google Scholar 

  40. Abdrakhmanova, L.M., Mironov, V.F., Dimukhametov, M.N., Krivolapov, D.B., and Litvinov, I.A., Mendeleev Commun., 2010, vol. 20, no. 1, p. 41. https://doi.org/10.1016/j.mencom.2010.01.016

    Article  CAS  Google Scholar 

  41. Abdrakhmanova, L.M., Мironov, V.F., Gryaznova, T.P., Katsyuba, S.A., and Dimukhametov, M.N., Phosphorus, Sulfur, Silicon, Relat. Elem., 2011, vol. 186, no. 4, p. 652. https://doi.org/10.1080/10426507.2010.521434

    Article  CAS  Google Scholar 

  42. Mironov, V.F., Baronova, T.A., Mironova, E.V., Dimukhametov, M.N., Krivolapov, D.B., and Abdrakhmanova, L.M., Russ. J. Org. Chem., 2015, vol. 51. No 3, p. 401. https://doi.org/10.1134/S1070428015030203.

    Article  CAS  Google Scholar 

  43. Dimukhametov, M.N., Mironov, V.F., Krivolapov, D.B., Mironova, E.V., and Musin, R.Z., Russ. Chem. Bull., 2013, vol. 62, no. 4, p. 1091. https://doi.org/10.1007/s11172-013-0147-5

    Article  CAS  Google Scholar 

  44. Mironov, V.F., Dimukhametov, M.N., Mironova, E.V., Krivolapov, D.B., and Abdrakhmanova, L.M., Russ. J. Gen. Chem., 2015, vol. 85, no. 2, p. 441. https://doi.org/10.1134/S1070363215020152

    Article  CAS  Google Scholar 

  45. Dimukhametov, M., Mironov, V., Krivolapov, D., Mironova, E., and Aksunov, I., Phosphorus, Sulfur, Silicon, Relat. Elem., 2015, vol. 190, nos. 5–6, p. 939. https://doi.org/10.1080/10426507.2014.993757

    Article  CAS  Google Scholar 

  46. Mironov, V.F., Dimukhametov, M.N., Mironova, E.V., Krivolapov, D.B., Ivkova, G.A., and Abdrakhmanova, L.M., Russ. J. Gen. Chem., 2015, vol. 85, no. 2, p. 450. https://doi.org/10.1134/S1070363215020164

    Article  CAS  Google Scholar 

  47. Khasiyatullina, N.R., Mironov, V.F., Mironova, E.V., Krivolapov, D.B., and Litvinov, I.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 3, p. 551. https://doi.org/10.1134/S1070363216030105

    Article  CAS  Google Scholar 

  48. Mironov, V.F., Dimukhametov, M.N., Efimov, S.V., Karataeva, F.Kh., and Klochkov, V.V., Russ. Chem. Bull., 2015, vol. 64, no. 10, p. 2517. https://doi.org/10.1007/s11172-015-1187-9

    Article  CAS  Google Scholar 

  49. Mironov, V.F., Dimukhametov, M.N., Efimov, S.V., Aminova, R.M., Karataeva, F.Kh., Krivolapov, D.B., Mironova, E.V., and Klochkov, V.V., J. Org. Chem., 2016, vol. 81, no. 14, p. 5837. https://doi.org/10.1021/acs.joc.6b00356

    Article  CAS  PubMed  Google Scholar 

  50. Khasiyatullina, N.R., Mironov, V.F., Krivolapov, D.B., Mironova, E.V., and Gnezdilov, O.I., RSC Adv., 2016, vol. 6, no. 89, p. 85745. https://doi.org/10.1039/c6ra17983e

    Article  CAS  Google Scholar 

  51. Pudovik, A.N., Gur’yanova, I.V., Banderova, L.V., and Romanov, G.V., J. Gen. Chem. USSR, 1968, vol. 38, no. 1, p. 142.

    Google Scholar 

  52. Pudovik, A.N., Konovalova, I.V., Romanov, G.V., Fitseva, R.G., and Burmistrova, N.P., J. Gen. Chem. USSR, 1973, vol. 43, no. 1, p. 38.

    Google Scholar 

  53. Romanov, G.V., Yagfarov, M.Sh., Konovalov, A.I., Pudovik, A.N., Konovalova, I.V., and Yusupova, T.N., J. Gen. Chem. USSR, 1973, vol. 43, no. 11, p. 2363.

    Google Scholar 

  54. Romanov, G.V., Fitseva, R.G., Konovalova, I.V., Pudovik, A.N., and Burmistrova, N.P., J. Therm. Anal., 1974, vol. 6, no. 1, p. 119.

    Article  CAS  Google Scholar 

  55. Ofitserov, E.N., Mironov, V.F., Sinyashina, T.N., Chernov, A.N., Konovalova, I.V., Il’yasov, A.V., and Pudovik, A.N., Doklady Chem., 1989, vol. 306, nos. 1–3, p. 146.

    Google Scholar 

  56. Bartle, K.D., Edmundson, R.S., and Jones, D.W., Tetrahedron, 1967, vol. 23, no. 4, p. 1701. https://doi.org/10.1016/S0040-4020(01)82569-2

    Article  CAS  Google Scholar 

  57. Edmundson, R.S. and Mitchell, E.W., J. Chem. Soc. (C), 1968, no. 16, p. 2091. https://doi.org/10.1039/J39680002091

    Article  Google Scholar 

  58. Majoral, J.P. and Navech, J., Compt. Rend. Acad. Sci. (C), 1969, vol. 268, no. 24, p. 2117.

    CAS  Google Scholar 

  59. Hall, L.D. and Malcolm, R.B., Canad. J. Chem., 1972, vol. 50, no. 13, p. 2092. https://doi.org/10.1139/v72-336

    Article  CAS  Google Scholar 

  60. Yu, J.H., Sopchik, A.E., Arif, A.M., and Bentrude, W.G., J. Org. Chem., 1990, vol. 55, no. 11, p. 3444. https://doi.org/10.1021/jo00298a009

    Article  CAS  Google Scholar 

  61. Yu, J.H., Arif, A.M., and Bentrude, W.G., J. Am. Chem. Soc., 1990, vol. 112, no. 21, p. 7451. https://doi.org/10.1021/ja00177a002

    Article  CAS  Google Scholar 

  62. Skowrońska, A., Kowara, J., Kamiński, R., Bujacz, G., and Wieczorek, M.W., J. Org. Chem., 2000, vol. 65, no. 2, p. 304. https://doi.org/10.1021/jo990921w

    Article  CAS  PubMed  Google Scholar 

  63. Aminova, R.M., Shamov, G.A., Savostina, L.I., and Mironov, V.F., Russ. J. Gen. Chem., 2006, vol. 76, no. 6, p. 906. https://doi.org/10.1134/S1070363206060107

    Article  CAS  Google Scholar 

  64. Ferao, A.E., Inorg. Chem., 2018, vol. 57, no. 14, p. 8058. https://doi.org/10.1021/acs.inorgchem.7b02816

    Article  CAS  Google Scholar 

  65. Ramirez, F., Nagabhushanam, M., and Smith, C., Tetrahedron, 1968, vol. 24, no. 4, p. 1785. https://doi.org/10.1016/S0040-4020(01)82484-4

    Article  CAS  Google Scholar 

  66. Ovchinnikov, V.V., Safina, Yu.G., and Cherkasov, R.A., J. Gen. Chem. USSR, 1990, vol. 60, no. 5, p. 878.

    Google Scholar 

  67. Kumara Swamy, K.C., Said, M.A., Kumaraswamy, S., Herbst-Irmer, R., and Pülm, M., Polyhedron, 1998, vol. 17, no. 20, p. 2532. https://doi.org/10.1016/S0277-5387(98)00160-0

    Article  Google Scholar 

  68. Edmundson, R.S., Chem. Ind. (London), 1965, no. 27, p. 1220.

    Google Scholar 

  69. Konig, T., Habicher, W.D., Hahner, U., Pionteck, J., Ruger, C., and Schwetlick, K., J. Prakt. Chem. Chem. Zeit., 1992, Bd 334, H. 4, S. 333. https://doi.org/10.1002/prac.19923340407

  70. Yu, J., Sopchik, A.E., Arif, A.M., Bentrude, W.G., and Röschenthaler, G.V., Heteroatom Chem., 1991, vol. 2, no. 1, p. 177. https://doi.org/10.1002/hc.520020120

    Article  CAS  Google Scholar 

  71. Ovchinnikov, V.V., Safina, Yu.G., Cherkasov, R.A., Karataeva, F.Kh., and Pudovik, A.N., J. Gen. Chem. USSR, 1988, vol. 58, no. 9, p. 1841.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant no. 19-03-00730).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Mironov.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.F., Dimukhametov, M.N., Blinova, Y.S. et al. Simultaneous Formation of Cage and Spirane Pentaalkoxyphosphoranes in Reaction of 5,5-Dimethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphosphorinane with Hexafluoroacetone. Russ J Gen Chem 90, 2080–2092 (2020). https://doi.org/10.1134/S1070363220110109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220110109

Keywords:

Navigation