Skip to main content
Log in

Synthesis of New Thiazole-Pyridine Hybrids and Their Anticancer Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of new thiazole incorporated pyridine derivatives containing the phenoxyacetamide moiety as a linking bridge has been synthesized. The synthetic strategy involves condensation of 2-(4-formylphenoxy)-N-(thiazol-2-yl)acetamide with cyanoacetic hydrazide followed by heterocyclization with acetylacetone, treatment of the produced acrylamides with malononitrile and substituted acetophenones, then heating the generated chalcones with mononitrile in acetic acid and ammonium acetate. In vitro anticancer activity of the newly synthesized thiazole-pyridine hybrids has been evaluated against prostate (PC3), liver (HepG2), laryngeal (Hep-2), and breast (MCF-7) cancer cell lines. One of thiazole-pyridine compounds 8c demonstrates higher activity (IC50 5.71 μM) against breast cancer than 5-fluorouracil used as a reference (IC50 6.14 μM). Molecular docking procedure has provided valuable information on the binding sites of the synthesized compounds with rho-associated protein kinase 1 (ROCK-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bagheri, M., Shekarchi, M., Jorjani, M., Ghahremani, M.H., Vosooghi, M., and Shafiee, A., Arch. Pharm., 2004, vol. 337, no. 1, p. 25. https://doi.org/10.1002/ardp.200300810

    Article  CAS  Google Scholar 

  2. Deb, P.K., Kaur, R., Chandrasekaran, B., Bala, M., Gill, D., Kaki, V.R., Akkinepalli, R.R., and Mailavaram, R., Med. Chem. Res., 2014, vol. 23, p. 2780. https://doi.org/10.1007/s00044-013-0861-4

    Article  CAS  Google Scholar 

  3. Jaen, J.C., Wise, L.D., Caprathe, B.W., Tecle, H., Bergmeier, S., Humblet, C.C., Heffner, T.G., Meltzer, L.T., and Pugsley, T.A., J. Med. Chem., 1990, vol. 33, no. 1, p. 311. https://doi.org/10.1021/jm00163a051

    Article  CAS  PubMed  Google Scholar 

  4. Biernasiuk, A., Kawczyńska, M., Berecka-Rycerz, A., Rosada, B., Gumieniczek, A., Malm, A., Dzitko, K., and Łączkowski, K.Z., Med. Chem. Res., 2019, vol. 28, p. 2023. https://doi.org/10.1007/s00044-019-02433-2

    Article  CAS  Google Scholar 

  5. Rauf, A., Kashif, M.K., Saeed, B.A., Al-Masoudi, N.A., and Hameed, S., J. Mol. Struct., 2019, vol. 1198, p. 126866. https://doi.org/10.1016/j.molstruc.2019.07.113

    Article  CAS  Google Scholar 

  6. Mitsuya, H., Yarchoan, R., and Broder, S. Science, 1990, vol. 249, no. 4976, p. 1533. https://doi.org/10.1126/science.1699273

    Article  CAS  PubMed  Google Scholar 

  7. Song, Y.L., Tian, C.P., Wu, Y., Jiang, L.H., and Shen, L.Q., Steroids, 2019, vol. 143, p. 53. https://doi.org/10.1016/j.steroids.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  8. Jorda, R., Lopes, S.M., Řezníčková, E., Ajani, H., Pereira, A.V., Gomes, C.S., and Melo, T.M.P., Eur. J. Med. Chem., 2019, vol. 178, p. 168. https://doi.org/10.1016/j.ejmech.2019.05.064

    Article  CAS  PubMed  Google Scholar 

  9. Abdelaziz, M.E., El-Miligy, M.M., Fahmy, S.M., Mahran, M.A., and Hazzaa, A.A., Bioorg. Chem., 2018, vol. 80, p. 674. https://doi.org/10.1016/j.bioorg.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Geronikaki, A. and Theophilidis, G., Eur. J. Med. Chem., 1992, vol. 27, p. 709. https://doi.org/10.1016/0223-5234(92)90091-E

    Article  CAS  Google Scholar 

  11. Shukla, J.S. and Bhatia, P., J. Indian Chem. Soc., 1978, vol. 55, p. 281.

    CAS  Google Scholar 

  12. Naik, K.G. and Bhat, Y.Q., J. Indian Chem. Soc., 1927, vol. 4, p. 547.

    Google Scholar 

  13. Dolly, A. and Griffiths, J.B., Cell and Tissue Culture for Medical Research, New York: Willey, 2000, p. 406.

  14. Dhamija, I., Kumar, N., Manjula, S.N., Parihar, V., Setty, M.M., and Pai, K.S.R., Exp. Toxicol. Pathol., 2013, vol. 65, no. 3, p. 235. https://doi.org/10.1016/j.etp.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  15. Abbas, H.A.S. and Abd El-Karim, S.S., Bioorg. Chem., 2019, vol. 89, p. 103035. https://doi.org/10.1016/j.bioorg.2019.103035

    Article  CAS  PubMed  Google Scholar 

  16. Al-Anazi, K.M., Mahmoud, A.H., Abul Farah, M., Allam, A.A., Fouda, M.M., and Gaffer, H.E., ChemistrySelect, 2019, vol. 4, no. 19, p. 5570. https://doi.org/10.1002/slct.201901148

    Article  CAS  Google Scholar 

  17. Choi, E.J. and Kim, G.H., Oncol. Rep., 2009, vol. 22, no. 6, p. 1533. https://doi.org/10.3892/or_00000598

    Article  CAS  PubMed  Google Scholar 

  18. Al-Dawood, A.Y., El-Metwaly, N.M., and El-Ghamry, H.A., J. Mol. Liq., 2016, vol. 220, p. 311. https://doi.org/10.1016/j.molliq.2016.04.079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bayazeed.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayazeed, A.A., Alnoman, R.B. Synthesis of New Thiazole-Pyridine Hybrids and Their Anticancer Activity. Russ J Gen Chem 90, 2004–2011 (2020). https://doi.org/10.1134/S1070363220100254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100254

Keywords:

Navigation