Skip to main content
Log in

A Perspective on Molecular Structure and Experimental-Computational Characterization of a Novel Cd(II) Pyridine-Terminal Salamo-like Coordination Polymer

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A structurally novel Cd(II) coordination polymer (CP), [Cd(H2L)2(NCS)2]n, has been self-assembled from a newly designed salamo-like ligand H2L bearing double terminal pyridine groups, Cd(II) and KSCN. The Cd(II) ion is not located in the N2O2 cavity of the ligand H2L and forms a six-coordinate octahedral geometrical configuration. Using Cd(II) ion as a node, the undeprotonated salamo-like ligand H2L units extend in space to give a Cd(II)CP with a 2D pore structure. Spectroscopic analysis of the ligand H2L and its Cd(II)CP is performed using IR, UV-Vis and fluorescence spectroscopy. Various short-range interactions in the Cd(II)CP are investigated on the basis of Hirshfeld surfaces analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication, no. CCDC – 2019252 for the Cd(II) CP. Copies of these data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [Telephone: +(44)-01223-762910; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk]. These data can be also obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

REFERENCES

  1. Schäfer, T., Sedykh, A.E., Becker, J., and Buschbaum, K.M.,Z. Anorg. Allg. Chem., 2020, vol. 646, p. 1. https://doi.org/10.1002/zaac.202000103

    Article  CAS  Google Scholar 

  2. Liu, J.J., Xia, S.B., Liu, D., Hou, J.Y., Suo, H.B., and Cheng, F.X., Dyes Pigm., 2020, vol. 177, p. 108269. https://doi.org/10.1016/j.dyepig.2020.108276

  3. Duan, J.G., Li, Y., Pan, Y., Behera, N., and Jin, W., Coord. Chem. Rev., 2019, vol. 395, p. 25. https://doi.org/10.1016/j.ccr.2019.05.018

    Article  CAS  Google Scholar 

  4. Zhang, J.W., Wang, C.R., Liu, W.H., Xu, S., and Liu, B.Q.,Inorg. Chim. Acta, 2020, vol. 508, p. 119648. https://doi.org/10.1016/j.ica.2020.119648

    Article  CAS  Google Scholar 

  5. Dong, Q., Guo, Y., Cao, H., Wang, S., Matsuda, R., and Duan, J.G.,ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 3764. https://doi.org/10.1021/acsami.9b20623

    Article  CAS  PubMed  Google Scholar 

  6. Kang, Y., Zhang, Y.H., Sun, P.P., Huang, P.B., Yu, X.H., Shi, Q., Tian, B., Gao, J., and Shi, F.N., Solid State Ionics, 2020, vol. 350, p. 115310. https://doi.org/10.1016/j.ssi.2020.115310

    Article  CAS  Google Scholar 

  7. Xu, H., Sabina, R.H., Javier, P.C., Jordi, J., Inhar, I., and Daniel, M., Cryst. Growth Des., 2016, vol. 16, p. 5598. https://doi.org/10.1021/acs.cgd.6b01115

    Article  CAS  Google Scholar 

  8. Gao, G.P., Zheng, F., and Wang, L.W., Chem. Mater., 2020, vol. 32. no. 5, p. 1974. https://doi.org/10.1021/acs.chemmater.9b04852

    Article  CAS  Google Scholar 

  9. Ma, N., Lin, C., Wu, N., Liu, Q., Ma, J.L., Meng, W., Wang, X.S., Zhang, L., Xu, X.H., Zhao, Y.F., Zhuang, L., Fan, J., Sun, J.L., Zhuo, R.X., and Zhang, X.Z., J. Mater. Chem. A, 2017, vol. 5, p. 23440. https://doi.org/10.1039/c7ta08002f

    Article  CAS  Google Scholar 

  10. Stephanie, A.B. and David, R.T., Cryst. Growth Des., 2016, vol. 16, no. 11, p. 6294. https://doi.org/10.1021/acs.cgd.6b00901

    Article  CAS  Google Scholar 

  11. Nakamura, T., Tsukuda, S., and Nabeshima, T., J. Am. Chem. Soc., 2019, vol. 141, p. 6462. https://doi.org/10.1021/jacs.9b00171

    Article  CAS  PubMed  Google Scholar 

  12. Sakata, Y., Chiba, S., Miyashita, M., Nabeshima, T., and Akine, S.,Chem. Eur. J., 2019, vol. 25, p. 2962. https://doi.org/10.1002/chem.201805799

    Article  CAS  PubMed  Google Scholar 

  13. Sumiyoshi, A., Chiba, Y., Matsuoka, R., Noda, T., and Nabeshima, T., Dalton Trans., 2019, vol. 48, p. 13169. https://doi.org/10.1039/c9dt02403d

    Article  CAS  PubMed  Google Scholar 

  14. Ryu, C.H., Kwak, S.W., Lee, H., Lee, H.W., Hwang, J.H., Kim, H.M., Chung, Y., Kim, Y.M., Park, M.H., and Lee, K.M., Inorg. Chem., 2019, vol. 58, p. 12358. https://doi.org/10.1021/acs.inorgchem.9b01948

    Article  CAS  PubMed  Google Scholar 

  15. Pan, Y.Q., Zhang, Y., Yu, M., Zhang, Y., and Wang, L., Appl. Organomet. Chem., 2020, vol. 34, p. e5441. https://doi.org/10.1002/aoc.5441

  16. Zhang, L.W., Zhang, Y., Cui, Y.F., Yu, M., and Dong, W.K.,Inorg. Chim. Acta, 2020, vol. 506, p. 119534. https://doi.org/10.1016/j.ica.2020.119534

    Article  CAS  Google Scholar 

  17. Zhang, S.Z., Chang, J., Zhang, H.J., Sun, Y.X., Wu, Y., and Wang, Y.B., Chin., J., Inorg. Chem., 2020, vol. 36, p. 503. https://doi.org/10.11862/CJIC.2020.056

  18. Kang, Q.P., Li, X.Y., Wei, Z.L., Zhang, Y., and Dong, W.K.,Polyhedron, 2019, vol. 165, p. 38. https://doi.org/10.1016/j.poly.2019.03.008

    Article  CAS  Google Scholar 

  19. Liu, L.Z., Yu, M., Li, X.Y., Kang, Q.P., and Dong, W.K., Chin. J.Inorg. Chem., 2019, vol. 35, p. 1283. https://doi.org/10.11862/CJIC.2019.158

    Article  CAS  Google Scholar 

  20. Zhang, Y., Liu, L.Z., Peng, Y.D., Li, N., and Dong, W.K., Transit. Met. Chem., 2019, vol. 44, p. 627. https://doi.org/10.1007/s11243-019-00325-3

    Article  CAS  Google Scholar 

  21. Pan, Y.Q., Xu, X., Zhang, Y., Zhang, Y., and Dong, W.K., Spectrochim. Acta A, 2020, vol. 229, p. 117927. https://doi.org/10.1016/j.saa.2019.117927

    Article  CAS  Google Scholar 

  22. Wei, Z.L., Wang, L., Wang, J.F., Guo, W.T., Zhang, Y., and Dong, W.K., Spectrochim. Acta A, 2020, vol. 228, p. 117775. https://doi.org/10.1016/j.saa.2019.117775

    Article  CAS  Google Scholar 

  23. Wang, L., Wei, Z.L., Chen, Z.Z., Liu, C., Dong, W.K., and Ding, Y.J. Microchem. J., 2020, vol. 155, p. 104801. https://doi.org/10.1016/j.microc.2020.104801

    Article  CAS  Google Scholar 

  24. Liu, C., Wei, Z.L., Mu, H.R., Dong, W.K., and Ding, Y.J., J. Photochem. Photobio. A, 2020, vol. 397, p. 112569. https://doi.org/10.1016/j.jphotochem.2020.112569

    Article  CAS  Google Scholar 

  25. Wang, L., Wei, Z.L., Liu, C., Dong, W.K, and Ru, J.X., Spectrochim. Acta A, 2020, vol. 239, p. 118496. https://doi.org/10.1016/j.saa.2020.118496

    Article  CAS  Google Scholar 

  26. Mu, H.R., Yu, M., Wang, L., Zhang, Y., and Ding, Y.J., Phosphorus Sulfur Silicon Relat. Elem., 2020, vol. 195, p. 730. https://doi.org/10.1080/10426507.2020.1756807

    Article  CAS  Google Scholar 

  27. Liu, L. Z., Wang, L., Yu, M., Zhao, Q., Zhang, Y., Sun, Y.X., and Dong, W.K., Spectrochim. Acta A, 2019, vol. 222, p. 117209. https://doi.org/10.1016/j.saa.2019.117209

    Article  CAS  Google Scholar 

  28. Mu, H.R., An, X.X., Liu, C., Zhang, Y., and Dong, W.K., J. Struct. Chem., 2020, vol. 61, no. 7, p. 1218. https://doi.org/10.26902/JSC_id60699

    Article  Google Scholar 

  29. Liu, C., An, X.X., Cui, Y.F., Xie, K.F., and Dong, W.K., Appl. Organomet. Chem., 2020, vol. 34, p. e5272. https://doi.org/10.1002/aoc.5272

  30. Zhang, Y., Yu, M., Pan, Y.Q., Zhang, Y., Xu, L., and Dong, X.Y., Appl. Organomet. Chem., 2020, vol. 34, p. e5442. https://doi.org/10.1002/aoc.5442

  31. Wang, L., Pan, Y.Q., Wang, J.F., Zhang, Y., and Ding, Y.J.,J. Photochem. Photobio. A, 2020, vol. 400, p. 112719. https://doi.org/10.1016/j.jphotochem.2020.112719

    Article  CAS  Google Scholar 

  32. Li, X.Y., Kang, Q.P., Liu, C., Zhang, Y., and Dong, W.K., New J. Chem., 2019, vol. 43, p. 4605. https://doi.org/10.1039/c9nj00014c

    Article  CAS  Google Scholar 

  33. Chang, J., Zhang, S.Z., Wu, Y., Zhang, H.J., and Sun, Y.X., Transit. Met. Chem., 2020, vol. 45, p. 279. https://doi.org/10.1007/s11243-020-00379-8

  34. Yu, M., Zhang, Y., Pan, Y.Q., and Wang, L., Inorg. Chim. Acta, 2020, vol. 509, p. 119701. https://doi.org/10.1016/j.ica.2020.119701

    Article  CAS  Google Scholar 

  35. An, X.X., Zhao, Q., Mu, H.R., and Dong, W.K., Crystals, 2019, vol. 9, p. 101. https://doi.org/10.3390/cryst9020101

    Article  CAS  Google Scholar 

  36. Sun, Y.X., Pan, Y.Q., Xu, X., and Zhang, Y., Crystals, 2019, vol. 9, p. 607. https://doi.org/10.3390/cryst9120607

    Article  CAS  Google Scholar 

  37. Guo, X.G., Qiu, S., Chen, X.T., Gong, Y., and Sun, X.Q., Inorg. Chem., 2017, vol. 56, p. 12357. https://doi.org/10.1021/acs.inorgchem.7b01835

    Article  CAS  PubMed  Google Scholar 

  38. Singh, P.P., Atreya, K., Polyhedron, 1982, vol. 9, no. 10, p. 711. https://doi.org/10.1016/S0277-5387(00)81055-4

    Article  Google Scholar 

  39. Majumder, A., Rosair, G.M., Mallick, A., Chattopadhyay, N., and Mitra, S., Polyhedron, 2006, vol. 25, p. 1753. https://doi.org/10.1016/j.poly.2005.11.029

    Article  CAS  Google Scholar 

  40. Akine, S., Morita, Y., Utsuno, F., and Nabeshima, T., Inorg. Chem., 2009, vol. 48, p. 10670. https://doi.org/10.1021/ic901372k

    Article  CAS  PubMed  Google Scholar 

  41. Dong, X.Y., Gao, L., Wang, F., Zhang, Y., and Dong, W.K., Chin. J.Inorg. Chem., 2018, vol. 34, p. 739. https://doi.org/10.11862/CJIC.2018.070

    Article  CAS  Google Scholar 

  42. Rohl, L.A., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J.J., and Kahr, B., Cryst. Growth Des., 2015, vol. 8, p. 4517. https://doi.org/10.1021/cg8005212

    Article  CAS  Google Scholar 

  43. Song, X.Q., Liu, P.P., Liu, Y.A., Zhou, J.J., and Wang, X.L.,Dalton Trans. 2016, vol. 45, p. 8154. https://doi.org/10.1039/c6dt00212a

  44. Guo, C.Y., Wang, Y.Y., Xu, K.Z., Zhu, H L., Liu, P., Shi, Q.Z., and Peng, S.M., Polyhedron, 2008, vol. 27, p. 3529. https://doi.org/10.1016/j.poly.2008.08.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), Science and Technology Program of Gansu Province (18YF1GA057) and the Program for Excellent Team in Scientific Research in Lanzhou Jiaotong University (201706), three of which are gratefully acknowledged. Computations were done using National Supercomputing Center in Shenzhen, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-K. Dong.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JF., Li, P., Li, LL. et al. A Perspective on Molecular Structure and Experimental-Computational Characterization of a Novel Cd(II) Pyridine-Terminal Salamo-like Coordination Polymer. Russ J Gen Chem 90, 1997–2003 (2020). https://doi.org/10.1134/S1070363220100242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100242

Keywords:

Navigation