Skip to main content
Log in

2D Carbon-Supported Platinum Catalysts for Hydrosilylation Reactions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

2D carbon structures were prepared by carbonization of biopolymers (starch) via self-propagating high-temperature synthesis process. Electron microscopic, Raman spectroscopic, and X-ray diffraction examinations showed that the structure of the resultant particles corresponded to graphene nanoplatelets. Based on the Raman spectroscopy data, the average number of graphene layers in a graphene nanoplatelets particle was estimated at 2–5. The graphene nanoplatelets synthesized were applied as a support of a platinum-based catalyst (Speier’s catalyst). The resultant supported catalyst was successfully used in the hydrosilylation of 1-hexene with methyldichlorosilane and then separated from the reaction products and reused. The catalytic activity of the supported catalyst was maintained for 4 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. IUPAC defines graphene as “a single carbon layer of graphite structure, describing its nature by analogy of a polycyclic aromatic hydrocarbon of quasi-infinite size.” Two or more layers of graphene are referred to as multilayer graphene (few layer graphene, graphene nanoplatelets).

REFERENCES

  1. Lewis, L.N., Wengrovious, J.H., Burnell, T.B., and Rich, J.D., Chem. Mater., 1997, vol. 9, p. 761. https://doi.org/10.1021/cm960465h

    Article  CAS  Google Scholar 

  2. Batch, G.L., Macosko, C.W., and Kemp, D.N., Rubber Chem. Technol., 1991, vol. 64, no. 2, p. 218. https://doi.org/10.5254/1.3538554

    Article  CAS  Google Scholar 

  3. Noll, W., Chemistry and Technology of Silicones, London: Academic, 1968.

  4. Wei, Z., Hou, Y., Yang, Y., and Liu, Y., Curr. Org. Chem., 2016, vol. 20, no. 20, p. 2055. https://doi.org/10.1038/srep15664

    Article  CAS  Google Scholar 

  5. Stiles, A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Stoneham, MA: Butterworth, 1987.

  6. Wagner, G.H., US Patent 2637738, 1953.

  7. Wagner, G.H. and Whitehead, W.J., US Patent 2851473, 1958.

  8. Pougel, E., Tonnar, J., Lucas, P., Lacroix-Desmazes, P., Ganachaud, F., and Boutevin, B., Chem. Rev., 2010, vol. 110, p. 1233. https://doi.org/10.1021/cr8001998

    Article  CAS  Google Scholar 

  9. Eremin, D.B. and Ananikov, V.P., Coord. Chem. Rev., 2017, vol. 346, p. 2. https://doi.org/10.1016/j.ccr.2016.12.021

    Article  CAS  Google Scholar 

  10. Fraga, M.A., Jordao, E., Mendes, M.J., Freitas, M.M.A., Faria, J.L., and Figueiredo, J.L., J. Catal., 2002, vol. 209, p. 355. https://doi.org/10.1006/jcat.2002.3637

    Article  CAS  Google Scholar 

  11. Wagner, G.H., US Patent 2637738, 1953.

  12. Nanocarbon and Its Composites: Preparation, Properties, and Applications, Khan, A., Jawaid, M., and Asiri, A.M., Eds., Duxford: Woodhead, 2018.

  13. Ismagilov, Z.R., Kerzhentsev, M.A., Shikina, N.V., Lisitsyn, A.S., Okhlopkova, L.B., Barnakov, Ch.N., Sakashita, M., Iijima, T., and Tadokoro, K., Catal. Today, 2005, vols. 102–103, p. 58. https://doi.org/10.1016/j.cattod.2005.02.007

    Article  CAS  Google Scholar 

  14. Lonkar, S.P. and Abdala, A.A., J. Thermodyn. Catal., 2014, vol. 5, no. 2, p. 132. https://doi.org/10.4172/2157-7544.1000132

    Article  CAS  Google Scholar 

  15. Huang, C., Li, C., and Shi, G., Energy Environ. Sci., 2012, vol. 5, p. 8848. https://doi.org/10.1039/C2EE22238H

    Article  CAS  Google Scholar 

  16. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys.-Usp., 2011, vol. 54, no. 3, p. 227. https://doi.org/10.3367/UFNr.0181.201103a.0233

    Article  CAS  Google Scholar 

  17. Gao, Y., Shi, W., Wang, W., Wang, Y., Zhao, Y., Lei, Z., and Miao, R., Ind. Eng. Chem. Res., 2014, vol. 53, p. 2839. https://doi.org/10.1021/ie402889s

    Article  CAS  Google Scholar 

  18. Volkov, K.V., Danilenko, V.V., and Elin, V.I., Fiz. Goren. Vzryva, 1990, vol. 26, no. 3, p. 123.

    CAS  Google Scholar 

  19. Merzhanov, A.G., Tverdoplamennoe gorenie (Solid-Flame Combustion), Chernogolovka: Inst. Strukt. Makrokinetiki i Problem Materialovedeniya Ross. Akad. Nauk, 2000.

  20. Azatyan, V.V., Usp. Khim., 1999, vol. 68, no. 12, p. 1122.

    Article  Google Scholar 

  21. Savkin, D.I., Shchuchkin, M.N., Voznyakovskii, A.P., and Shamanin, V.V., RF Patent 2516542, 2012.

  22. Speier, J.L. and Hook, D.E., US Patent 2823218, 1958.

  23. Zhaoa, M., Li, B., Cai, J.-X., Liu, Ch., McAdam, K.G., and Zhang, K., Fuel Process. Technol., 2016, vol. 153, p. 43. https://doi.org/10.1016/j.fuproc.2016.08.002

    Article  CAS  Google Scholar 

  24. Xue, Zh., Chen, P., and He, L., Int. J. Mater. Res., 2015, vol. 106, no. 11, p. 1196. https://doi.org/10.3139/146.111295

    Article  CAS  Google Scholar 

  25. Vongsetskul, T., Prakulpawong, P., Sirisomboon, P., Tantirungrotechai, J., Surasit, C., and Tangboriboonrat, P., Thermal Sci., 2017, vol. 21, no. 5, p. 2227. https://doi.org/10.2298/TSCI150312199V

    Article  Google Scholar 

  26. Siburian, R., Sihotang, H., Lumban Raja, S., Supeno, M., and Simanjuntak, C., Orient. J. Chem., 2018, vol. 34, no. 1, p. 182. https://doi.org/10.13005/ojc/340120

    Article  CAS  Google Scholar 

  27. Johra, F.T., Lee, J.W., and Jung, W.-G., J. Ind. Eng. Chem., 2014, vol. 20, no. 5, p. 2883. https://doi.org/10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  28. Ferrari, A.C., Solid State Commun., 2007, vol. 143, p. 47. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  29. Obraztsova, E.A., Phys. Status Solidi B, 2008, vol. 245, no. 10, p. 2055. https://doi.org/10.1002/pssb.200879657

    Article  CAS  Google Scholar 

  30. Ferrari, A.C., Phys. Rev. Lett., 2006, vol. 97, no. 18, p. 187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H., J. Colloid Interface Sci., 2007, vol. 316, no. 2, p. 277. https://doi.org/10.1016/j.jcis.2007.07.075

    Article  CAS  PubMed  Google Scholar 

  32. Petrov, I., Diamond Relat. Mater., 2007, vol. 16, no. 12, p. 2098. https://doi.org/10.1016/j.diamond.2007.05.013

    Article  CAS  Google Scholar 

  33. Li, M., Carbon, 2008, vol. 46, no. 3, p. 466. https://doi.org/10.1016/j.carbon.2007.12.012

    Article  CAS  Google Scholar 

  34. Speier, J.L., Adv. Organometal. Chem., 1979, vol. 17, p. 407. https://doi.org/10.1016/S0065-3055(08)60328-7

    Article  CAS  Google Scholar 

  35. Lukevits, E.Ya. and Voronkov, M.G., Gidrosililirovanie, gidrogermilirovanie, gidrostannilirovanie (Hydrosilylation, Hydrogermylation, and Hydrostannylation), Riga: Akad. Nauk Latv. SSR, 1964.

  36. Pukhnarevich, V.B., Lukevits, E.Ya., Kopylova, L.I., and Voronkov, M.G., Perspektivy gidrosililirovaniya (Prospects of Hydrosilylation), Riga: Akad. Nauk Latv. SSR, 1992.

Download references

ACKNOWLEDGMENTS

We are grateful to N.K. Skvortsov from St. Petersburg State Institute of Technology (Technical University) for useful discussion of the results of the hydrosilylation process.

Funding

This study was carried out within the framework of State thematic studies of the Ioffe Physicotechnical Institute (theme no. 0040-2014-0013, A.A. Voznyakovskii) and was financially supported by the Russian Foundation for Basic Research (project no. 18-29-24129mk, A.P. Voznyakovskii, A.Yu. Neverovskaya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Voznyakovskii.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voznyakovskii, A.P., Neverovskaya, A.Y., Kalinin, A.V. et al. 2D Carbon-Supported Platinum Catalysts for Hydrosilylation Reactions. Russ J Gen Chem 90, 1944–1948 (2020). https://doi.org/10.1134/S1070363220100163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100163

Keywords:

Navigation