Skip to main content
Log in

Chemical Modification of Graphene

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Methods of graphene preparation, its structure, physical and chemical properties are reviewed. Two stages of chemical modification of graphene are described—primary (functionalization) and secondary (covalent attachment of organic compounds) modification. The main attention is paid to methods for the synthesis of graphene derivatives: oxide, graphane, halides, nitrogen-containing compounds, and conjugates of graphene and graphene oxide with organic and bioorganic molecules. The main areas of potential application of modified graphene materials are briefly considered. Biomedicine and medical diagnostics are the most promising areas of practical use of graphene conjugates and materials based on it. However, detailed studies of the toxicity of graphene and its derivatives should be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme

Similar content being viewed by others

REFERENCES

  1. Carbon Nanomaterials Source Book: Graphene, Fullerenes, Nanotubes and Nanodiamonds, Sattler, K.D., Ed., Boca Raton: CRC Press Taylor and Francis Group, 2016.

  2. Schwiezz, F., Nat. Nanotechn., 2010, vol. 5, p. 487. https://doi.org/10.1038/nnano.2010.89

    Article  CAS  Google Scholar 

  3. Pallecchi, E., Benz, C., Betz, A.C., Löhneysen, H.V., Plaçais, B., and Danneau, R., Phys. Lett., 2011, vol. 99, p. 113502. https://doi.org/10.1063/1.3633105

    Article  CAS  Google Scholar 

  4. Rasuli, R., Zad, A.I., and Ahadian, M.M., Nanotechnology, 2010, vol. 21, p. 185503. https://doi.org/10.1088/0957-4484/21/18/185503

    Article  CAS  PubMed  Google Scholar 

  5. Shedin, F., Geim, F.R., Morozov, S.V., Hill, E.V., Blake, P., Katshelson, M.I., and Novoselov, K.S., Nat. Mater., 2007, vol. 6, no. 9, p. 652. https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  6. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S.L., Koppens, F.H., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hong, B.H., Ahn, J.-H., Kim, J.M., Zirath, H., van Wees, B.J., Vander Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Löfwander, T., and Kinare, J., Nanoscale, 2015, vol. 7, p. 4598. https://doi.org/10.1039/C4NR01600A

    Article  CAS  PubMed  Google Scholar 

  7. Randviir, E.P., Brownson, D.A.C., and Banks, C.E., Mater. Today, 2014, vol. 17, no. 9, p. 426. https://doi.org/10.1016/j.mattod.2014.06.001

    Article  CAS  Google Scholar 

  8. Eliseev, A.A. and Lukashin, A.V., Funktsional’nye nanomaterialy (Functional Nanomaterials), Moscow: Fizmatlit, 2010.

  9. Pollard, A.J. and Clifford, Ch.A., J. Mater. Sci., 2017, vol. 52, p. 13685. https://doi.org/10.1007/s10853-017-1567-7

    Article  CAS  Google Scholar 

  10. Gubin, S.P. and Tkachev, S.V., Radioelektronika. Nanosistemy. Inform. Tekhnol., 2010, vol. 2, nos. 1–2, p. 99.

    Google Scholar 

  11. Grayfer, E.D., Makotchenko, V.G., Nazarov, A.S., Kim, S.J., and Fedorov, V.E., Russ. Chem. Rev., 2011, vol. 80, no. 8, p. 751. https://doi.org/10.1070/RC2011v080n08ABEH004181

    Article  CAS  Google Scholar 

  12. Katsnelson, M.I., Graphene: Carbon in Two Dimensions, New York: Cambridge University Press, 2012.

  13. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys. Usp., 2011, vol. 54, no. 3, p. 227.

    Article  CAS  Google Scholar 

  14. Novoselov, K.S., Jiang, D., Schedin, F., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., Proc. Nat. Acad. Sci., 2005, vol. 102, no. 30, p. 10451. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  PubMed  Google Scholar 

  15. Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A.J., Vogel, U., Martín, C., Delogu, L.G., Buerki-Thurnherr, T., Wick, P., Beloin-Saint-Pierre, D., Hischier, R., Pelin, M., Carniel, F.C., Tretiach, M., Cesca, F., Benfenati, F., Scaini, D., Ballerini, L., Kostarelos, K., Prato, M., and Bianco, A., ACS Nano, 2018, vol. 12, no. 11, p. 10582. https://doi.org/10.1021/acsnano.8b04758

    Article  CAS  PubMed  Google Scholar 

  16. Aleksenko, A.G., Grafen (Graphene), Moscow: Binom. Laboratoriya Znanii, 2019.

  17. Novoselov, K.S., Phys. Usp., 2011, vol. 54, no. 12, p. 1299. https://doi.org/10.3367/UFNr.0181.201112f.1299

    Article  Google Scholar 

  18. Kulmet’eva, V.B. and Ponosova, A.A., Sovremen. Probl. Nauki i Obrazov., 2015, no. 2, p. 2.

    Google Scholar 

  19. An, X., Simmons, T., Shah, R., Wolfe, Ch., Lewis, K.M., Washington, M., Nayak, S.K., Talapatra, S., and Kar, S., Nano Lett., 2010, vol. 10, no. 11, p. 4295. https://doi.org/10.1021/nl903557p

    Article  CAS  PubMed  Google Scholar 

  20. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N., Nat. Nanotechn., 2008, vol. 3, no. 9, p. 563. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  21. Chen, G., Weng, W., Wu, D., Li, J., Wang, P., and Chen, X., Carbon, 2004, vol. 42, no. 4, p. 753. https://doi.org/10.1016/j.carbon.2003.12.074

    Article  CAS  Google Scholar 

  22. Veca, L.M., Meziani, M.J., Wang, W., Wang, X., Lu, F., Zhang, P., Lin, Y., Fee, R., Connell, J.W., and Sun, Y.-P., Progr. Surf. Sci., 2009, vol. 21, p. 2088. https://doi.org/10.1002/adma.200802317

    Article  CAS  Google Scholar 

  23. Osváth, Z., Darabont, Al., Nemes-Incze, P., Horváth, E., Horváth, Z.E., and Biró, L.P., Carbon, 2007, vol. 5, p. 3022. https://doi.org/10.1016/j.carbon.2007.09.033

    Article  CAS  Google Scholar 

  24. Tontegode, A.Y., Progr. Surf. Sci., 1991, vol. 38, nos. 3–4, p. 201. https://doi.org/10.1016/0079-6816(91)90002-L

    Article  CAS  Google Scholar 

  25. Gall, N.R., Rut’kov, E.V., and Tontegode, A.Y., Int. J. Modern Phys. (B), 1997, vol. 11, no. 16, p. 1865. https://doi.org/10.1142/S0217979297000976

    Article  CAS  Google Scholar 

  26. Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Hong, B.H., Nature, 2009, vol. 457, no. 7230, p. 706. https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  27. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J., Nano Lett., 2009, vol. 9, no. 1, p. 30. https://doi.org/10.1021/nl801827v

    Article  CAS  PubMed  Google Scholar 

  28. Lee, Y., Bae, S., Jang, H., and Jang, S., Nano Lett., 2010, vol. 10, no. 2, p. 490. https://doi.org/10.1021/nl903272n

    Article  CAS  PubMed  Google Scholar 

  29. Sutter, P.W., Flege, J.I., and Sutter, E.A., Nat. Mater., 2008, vol. 7, no. 5, p. 406. https://doi.org/10.1038/nmat2166

    Article  CAS  PubMed  Google Scholar 

  30. Shavelkina, M.B. and Amirov, R.H., Nanosystems: Physics, Chemistry, Mathematics, 2019, vol. 10, no. 1, p. 102. https://doi.org/10.17586/2220-8054-2019-10-1-102-106

    Article  CAS  Google Scholar 

  31. Robinson, J., Weng, X., Trumbull, K., Cavalero, R., Wetherington, M., Frantz, E., LaBella, M., Hughes, Z., Fanton, M., and Snyder, D., ACS Nano, 2010, vol. 4, no. 1, p. 153. https://doi.org/10.1021/nn901248j

    Article  CAS  PubMed  Google Scholar 

  32. Tetlow, H., Posthumade, B.J., Ford, I.J., Vvedensky, D.D., Coraux, J., and Kantorovich, L., Phys. Rep., 2014, vol. 542, no. 3, p. 195. https://doi.org/10.1016/j.physrep.2014.03.003

    Article  CAS  Google Scholar 

  33. Yazdi, R., Iakimov, T., and Yakimova, R., Crystals, 2016, vol. 6, no. 5, p. 53. https://doi.org/10.3390/cryst6050053

    Article  CAS  Google Scholar 

  34. Lebedev, S.P., Davydov, V.Yu., Usachov, D.Yu., Smirnov, A.N., Levitskii, V.S., Eliseyev, I.A., Guschina, E.V., Dunaevskiy, M.S., Vilkov, O.Yu., Rybkin, A.G., Lebedev, A.A., Novikov, S.N., Makarov, Yu.N., Nanosystems: Physics, Chemistry, Mathematics, 2018, vol. 9, no. 1, p. 95. https://doi.org/10.17586/2220-8054-2018-9-1-95-97

    Article  CAS  Google Scholar 

  35. Paredes, J.I., Villar-Rodi, S., Martinez-Alonso, A., and Tascon, J.M.D., Langmuir, 2008, vol. 24, no. 19, p. 10560. https://doi.org/10.1021/la801744a

    Article  CAS  PubMed  Google Scholar 

  36. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleihammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Carbon, 2007, vol. 45, no. 7, p. 1558. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  37. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., and Tour, J.M., J. Am. Chem. Soc., 2008, vol. 130, no. 48, p. 16201. https://doi.org/10.1021/ja806499w

    Article  CAS  PubMed  Google Scholar 

  38. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., and Yao, J., J. Phys. Chem. (C), 2008, vol. 112, no. 22, p. 8192. https://doi.org/10.1021/jp710931h

    Article  CAS  Google Scholar 

  39. Tung, V.C., Allen, M.J., Yang, Y., and Kane, R.B., Nat. Nanotechn., 2009, vol. 4, p. 25. https://doi.org/10.1038/nnano.2008.329

    Article  CAS  Google Scholar 

  40. Shul’ga, Yu.M., Shul’ga, N.Yu., and Parkhomenko, Yu.N., Izv. Vuzov. Materialy Elektron. Tekhn., 2014, vol. 17, no. 3, p. 157. https://doi.org/10.17073/1609-3577-2014-3-157-167

    Article  CAS  Google Scholar 

  41. Li, D., Müller, M.B., Gilje, S., Kanner, R.B., and Wallace, G.G., Nat. Nanotechn., 2008, vol. 4, p. 101. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  42. Tkachev, S.V., Buslaev, E.Yu., Naumkin, A.V., Kotova, S.L., Laure, I.V., and Gubin, S.P., Inorg. Mater., 2012, vol. 48, no. 8, p. 796. https://doi.org/10.1134/S0020168512089158

    Article  CAS  Google Scholar 

  43. Gubin, S.P. and Tkachev, S.V., Grafen i rodstvennye nanoformy ugleroda (Graphene and Related Carbon Nanoforms), Moscow: URSS, 2019.

  44. Rakov, E.G., Nanotrubki i fullereny (Nanotubes and Fullerenes), Moscow: Logos, 2006.

  45. Kim, W.S., Moon, S.Y., Bang, S.Y., Choi, B.G., Ham, H., Sekino, T., and Shim, K.B., Appl. Phys. Lett., 2009, vol. 95, p. 083103. doi10.1063/1.3213350

    Google Scholar 

  46. Kim, K., Sussman, A., and Zettl, A., ACS Nano, 2010, vol. 4, no. 3, p. 1362. https://doi.org/10.1021/nn901782g

    Article  CAS  PubMed  Google Scholar 

  47. Terrones, M., ACS Nano, 2010, vol. 4, no. 4, p. 1775. https://doi.org/10.1021/nn1006607

    Article  CAS  PubMed  Google Scholar 

  48. Kosynkin, D.V., Higginbotham, F.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M., Nature, 2009, vol. 458, p. 872. https://doi.org/10.1038/nature07872

    Article  CAS  PubMed  Google Scholar 

  49. Openov, L.A. and Podlivaev, A.I., Phys. Solid State, 2015, vol. 57, no. 12, p. 2562. https://doi.org/10.1134/S1063783415120276

    Article  CAS  Google Scholar 

  50. Podlivaev, A.I. and Openov L.A, JEPT Lett., 2015, vol. 101, no. 3, p. 173. https://doi.org/10.1134/S002136401503011X

    Article  CAS  Google Scholar 

  51. Pentsak, E.O., Kashin, A.S., Polynski, M.V., Kvashnina, K.O., Glatzel, P., and Ananikov, V.P., Chem. Sci., 2015, no. 6, p. 3302. https://doi.org/10.1039/c5sc008021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, L., Hu, H., Quyang, Yu., Pan, H.Z., Sunny, Y., and Liu, F., Carbon, 2011, vol. 49, p. 3356. https://doi.org/10.1016/j.carbon.2011.04.043

    Article  CAS  Google Scholar 

  53. Banhart, F., Kotakoski, J., and Krasheninnikov, A.V., ACS Nano, 2010, vol. 5, no. 1, p. 26. https://doi.org/10.1021/nn102598m

    Article  CAS  PubMed  Google Scholar 

  54. Bunch, J.S., Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L., Sсience, 2007, vol. 315, no. 5811, p. 490. https://doi.org/10.1126/science.1136836

    Article  CAS  Google Scholar 

  55. Geim, A.K. and Novoselov, K.S., Nature Mater., 2007, vol. 6, no. 3, p. 183. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  56. Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., and Dékány, I., Chem. Mater., 2006, vol. 18, no. 11, p. 2740. https://doi.org/10.1021/cm060258+

    Article  CAS  Google Scholar 

  57. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., Nesterenko, P.N., and Furman, D.B., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Moscow: Fizmatlit, 2003.

  58. Sofo, J., Chaudhari, A., and Barber, G., Phys. Rev. (B), 2007, vol. 75, p. 153401. https://doi.org/10.1103/PhysRevB.75.153401

    Article  CAS  Google Scholar 

  59. Boukhvalov, D.W., Katsnelson, M.I., and Lichtenstein, A.I., Phys. Rev. (B), 2008, vol. 77, p. 035427. https://doi.org/10.1103/PhysRevB.77.035427

    Article  CAS  Google Scholar 

  60. Chernozatonskii, L.A., Artyukh, A.A., and Kvashnin, D.G., JETP Lett., 2012, vol. 95, no. 5, p. 266. https://doi.org/10.1134/S0021364012050049

    Article  CAS  Google Scholar 

  61. Chernozatonskii, L.A., Sorokin, P.B., and Artukh, A.A., Russ. Chem. Rev., 2014, vol. 83, no. 3, p. 251. https://doi.org/10.1070/RC2014v083n03ABEH004367

    Article  CAS  Google Scholar 

  62. Kvashnin, D.G. and Chernozatonskii, L.A., Appl. Phys. Lett., 2014, vol. 105, p. 083115. https://doi.org/10.1063/1.4894462

    Article  CAS  Google Scholar 

  63. Hofman, R., Khim. Zhizn’ XXI vek, 2011, no. 9, p. 10.

    Google Scholar 

  64. Kvashnin, D.G., Sorokin, P.B., Kvashnina, O.P., Sorokina, T.P., and Chernozatonskii, L.A., Izv. Vuzov, Ser. Khim. Khim. Tekhnol., 2014, vol. 57, no. 5, p. 77.

    CAS  Google Scholar 

  65. Kvashnin, A.G., Kvashnina, O.P., and Kvashnin, D.G., Nanotechnology, 2015, vol. 26, no. 17, p. 175704. https://doi.org/10.1088/0957-4484/26/17/175704

    Article  CAS  PubMed  Google Scholar 

  66. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G, Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., and Novoselov, K.S., Science, 2009, vol. 323, p. 610. https://doi.org/10.1126/science.1167130

    Article  CAS  PubMed  Google Scholar 

  67. Savchenko, A., Science, 2009, vol. 323, p. 589. https://doi.org/10.1126/science.1169246

    Article  CAS  PubMed  Google Scholar 

  68. Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., Volfkovich, Y.M., Shulga, N.Y., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., J. Power Sources, 2015, vol. 279, p. 722. https://doi.org/10.1016/j.jpowsour.2015.01.032

    Article  CAS  Google Scholar 

  69. Chernozatonskii, L.A., Sorokin, P.B., Belova, E.É., Brünin, J., and Fedorov, A.S., JETP Lett., 2007, vol. 85, no. 1, p. 77. https://doi.org/10.1134/S002136400701016X

    Article  CAS  Google Scholar 

  70. Chernozatonskii, L.A., Sorokin, P.B., Kvashnin, A.G., and Kvashnin, D.G., JETP Lett., 2009, vol. 90, no. 2, p. 134. https://doi.org/10.1134/S0021364009140112

    Article  Google Scholar 

  71. Sorokin, P.B., Doctoral (Phys.-Math.) Dissertation, Moscow, 2014.

  72. Fateev, V.N., Alekseeva, O.K., Korobtsev, S.V., Seregina, E.A., Fateeva, T.V., Grigoriev, A.S., and Aliev, A.Sh., Chem. Problems, 2018, no. 4, p. 453. https://doi.org/10.32737/2221-8688-2018-4-453-483

    Article  Google Scholar 

  73. Openov, L.A. and Podlivaev, A.I., Techn. Phys. Lett., 2010, vol. 36, no .1, p. 31. https://doi.org/10.1134/S1063785010010104

    Article  CAS  Google Scholar 

  74. Nechaev, Yu.S. and Filippova, V.P., Radioelektronika. Nanosistemy. Informatsionnye tekhnologii (Radioelectronics. Nanosystems. Information Technology), 2015, vol. 7, no. 2, p. 145. https://doi.org/10.17725/rensit.2015.07.145

    Article  Google Scholar 

  75. Sato, Y., Watano, H., Hagiwara, R., and Ito, Y., Carbon, 2006, vol. 44, p. 664. https://doi.org/10.1016/j.carbon.2005.09.029

    Article  CAS  Google Scholar 

  76. Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badesku, S.C., Reinecre, T.L., Perkins, F.K., Zalalutdinov, M.K., Baldwin, W.J., Cilbertson, J.C., Sheehan, P.E., and Snow, E.S., Nano Lett., 2010, vol. 10, no. 8, p. 3001. https://doi.org/10.1021/nl101437p

    Article  CAS  PubMed  Google Scholar 

  77. Raveendran-Nair, R., Ren, W., Jalil, R., Riaz, I., Kravets, V., Britnell, L., Blake, P., Schedin, F., Mayorov, A., Yuan, S., Katsnelson, M., Cheng, H.-M., Strupinski, W., Bulusheva, L., Okotrub, A., Grigorieva, I., Grigorenko, A., Novoselov, K., and Geim, A., Small, 2010, vol. 6, p. 2877. https://doi.org/10.1002/smll.201001555

    Article  CAS  Google Scholar 

  78. Zboril, R., Karlicky, F., Bourlinos, A.B., Steriotis, Th.A., Stubos, A.K., Georgakilas, V., Safarova, K., Jancikik, D., Trapalis, Ch., and Otyepka, M., Small, 2010, vol. 6, p. 2885. https://doi.org/10.1002/smll.201001401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nikonorov, Yu.I. and Gornostaev, L.L., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1979, no. 9, p. 55.

    Google Scholar 

  80. Yudanov, N.F. and Chernyavskii, L.I., J. Struct. Chem., 1988, vol. 28, p. 534. https://doi.org/10.1007/BF00749587

    Article  Google Scholar 

  81. CN Patent 102530911, 2012.

  82. Withers, F., Dubois, M., and Savchenko, A.K., Phys. Rev. (B), 2010, vol. 82, p. 073403. https://doi.org/10.1103/PhysRevB.82.073403

    Article  CAS  Google Scholar 

  83. Lee, J.H., Shin, D.W., Makotchenko, V.G., Nazarov, A.S., Fedorov, V.E., Yoo, J.H., Yu, S.M., Choi, J.Y., Kim, J.M., and Yoo, J.B., Small, 2010, vol. 6, no. 1, p. 58. https://doi.org/10.1002/smll.200901556

    Article  CAS  PubMed  Google Scholar 

  84. Antonova I.V, Kotin, I.A., Nebogatikova, N.A., and Prinz, V.Ya., Tech. Phys. Lett., 2015, vol. 41, p. 950. https://doi.org/10.1134/S1063785015100028

    Article  CAS  Google Scholar 

  85. Wu, J., Xie, L., Li, Y., Wand, H., Ouyang, Y., Guo, J., and Dai, H., J. Am. Chem. Soc., 2011, vol. 133, p. 19668. https://doi.org/10.1021/ja2091068

    Article  CAS  PubMed  Google Scholar 

  86. Ijäs, M., Havu, P., and Harju, A., Phys. Rev. (B), 2013, vol. 87, p. 205430. https://doi.org/10.1103/PhysRevB.87.205430

    Article  CAS  Google Scholar 

  87. Hummers, W.S. and Offenman, R.E., J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  88. Titelman, G.I., Gelman, V., Bron, S., Khaifin, R.L., Cohen, Y., and Bianco-Poled, H., Carbon, 2005, vol. 43, no. 3, p. 641. https://doi.org/10.1016/j.carbon.2004.10.035

    Article  CAS  Google Scholar 

  89. Akhavan, O. and Ghaderi, E., J. Phys. Chem., 2009, vol. 113, no. 47, p. 20214. https://doi.org/10.1021/jp906325q

    Article  CAS  Google Scholar 

  90. Pham, V.H., Pham, H.D., Dang, T.T., Hue, S.H., Kim, E.J., Kong, B.S., Kim, S., and Chung, J.S., J. Mater. Chem., 2012, vol. 22, p. 10530. https://doi.org/10.1039/C2JM30562C

    Article  CAS  Google Scholar 

  91. Chen, T., Zeng, B., Lie, J.L., Dong, J.H., Liu, X.Q., Wu, Z., Yang, X.Z., and Li, Z.M., J. Phys. Conf. Ser., 2009, vol. 188, no. 1, p. 1. https://doi.org/10.1088/1742-6596/188/1/012051

    Article  CAS  Google Scholar 

  92. Luo, J.Y., Cote, L.J., Tung, V.C., Nan, A.T.L., Goins, P.E., Wu, J.S., and Huang, J.X., J. Am. Chem. Soc., 2010, vol. 132, no. 50, p. 17667. https://doi.org/10.1021/ja1078943

    Article  CAS  PubMed  Google Scholar 

  93. Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., De Heer, W., Bongiorno, A., and Riedo, E., Nature Mat., 2012, vol. 11, p. 544. https://doi.org/10.1038/nmat3316

    Article  CAS  Google Scholar 

  94. Lee, D.W. and Seo, J.W., J. Phys. Chem. (C), 2011, vol. 115, no. 6, p. 2705. https://doi.org/10.1021/jp107906u

    Article  CAS  Google Scholar 

  95. Lee, D.W. and Seo, J.W., J. Phys. Chem. (C), 2011, vol. 115, no. 25, p. 12483. https://doi.org/10.1021/jp201429e

    Article  CAS  Google Scholar 

  96. Aboutelebi, S.H., Gudarzi, M.M., Zhang, Q.B., and Kim, J.-K., Adv. Funct. Mater., 2011, vol. 21, no. 15, p. 2978. https://doi.org/10.1002/adfm.201100448

    Article  CAS  Google Scholar 

  97. Nguyen Hyu Van, Candidate Sci. (Chem.) Dissertation, Moscow, 2013.

  98. Pei, S., Wei, Q., Huang, K., and Cheng, H.-M., Carbon, 2010, vol. 4, no. 15, p. 4466. https://doi.org/10.1016/j.carbon.2010.08.006

    Article  CAS  Google Scholar 

  99. Pei, S., Wei, Q., Huang, K., and Cheng, H.-M., Nature Commun., 2018, vol, no. 1, p. 145. https://doi.org/10.1038/s41467-017-02479-z

    Article  CAS  Google Scholar 

  100. Rabchinskii, M., Ryzhkov, S., Kirilenko, D., Ulin, N., Baidakova, M., Shnitov, V., Pavlov, S., Chumakov, R., Stolyarova, D., Besedina, N., Shvidchenko, A., Potorochin, D., Roth, F., Smirnov, D., Gudkov, M., Brzhezinskaya, M., Lebedev, O., Melnikov, V., and Brunkov, P., Sci. Rep., 2020, vol. 10, p. 10. https://doi.org/10.1038/s41598-020-63935-3

    Article  CAS  Google Scholar 

  101. Yu, J.W., Jung, J., Choi, Y.-M., Choi, J.H., Yu, J., Lee, J.K., You, N.-H., and Goh, M., Polym. Chem., 2016, no. 7, p. 36. https://doi.org/10.1039/C5PY01483B

    Article  CAS  Google Scholar 

  102. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Nature, 2006, vol. 442, p. 282. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  103. Park, S., Dikin, D.A., Nguyen, S.T., and Ruoff, R.S., J. Phys. Chem. (C), 2009, vol. 113, p. 15801. https://doi.org/10.1021/jp907613s

    Article  CAS  Google Scholar 

  104. Loh, K.P., Bao, Q., Ang, P.K., and Yang, J., J. Mater. Chem., 2010, vol. 20, p. 2277. https://doi.org/10.1039/B920539J

    Article  CAS  Google Scholar 

  105. Kim, H., Abdala, A.A., and Macosko, C.W., Macromolecules, 2010, vol. 43, p. 6515. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  106. Kamat, P.V., J. Phys. Chem. Lett., 2010, vol. 1, p. 520. https://doi.org/10.1021/jz900265j

    Article  CAS  Google Scholar 

  107. Mohanty, N. and Berry, V., Nano Lett., 2008, vol. 8, p. 4469. https://doi.org/10.1021/nl802412n

    Article  CAS  PubMed  Google Scholar 

  108. Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., and Niu, L., Langmuir, 2009, vol. 25, p. 12030. https://doi.org/10.1021/la903265p

    Article  CAS  PubMed  Google Scholar 

  109. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zbořil, R., and Kim, K.S., Chem. Rev., 2012, vol. 112, p. 6156. https://doi.org/10.1021/cr3000412

    Article  CAS  PubMed  Google Scholar 

  110. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., and Brus, L.E., J. Am. Chem. Soc., 2009, vol. 31, p. 17099. https://doi.org/10.1021/ja9043906

    Article  CAS  Google Scholar 

  111. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H., Nano Res., 2008, vol. 1, p. 203. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun, Z., Kohama, S.-I., Zhang, Z., Lomeda, J.R., and Tour, J.M., Nano Res., 2010, vol. 3, p. 117. https://doi.org/10.1007/s12274-010-1016-2

    Article  CAS  Google Scholar 

  113. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., and Haddon, R.C., J. Am. Chem. Soc., 2006, vol. 128, p. 7720. https://doi.org/10.1021/ja060680r

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Z., Robinson, J.T., Sun, X., and Dai, H.J., J. Am. Chem. Soc., 2008, vol. 130, p. 10876. https://doi.org/10.1021/ja803688x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., and Chen, Y., Progr. Surf. Sci., 2009, vol. 21, p. 1275. https://doi.org/10.1002/adma.200801617

    Article  CAS  Google Scholar 

  116. Zhang, X., Huang, Y., Wang, Y., Ma, Y., Liu, Z., and Chen, Y., Carbon, 2009, vol. 47, p. 334. https://doi.org/10.1016/j.carbon.2008.10.018

    Article  CAS  Google Scholar 

  117. Liu, Z.-B., Xu, Y.-F., Zhang, X.-Y., Zhang, X.-L., Chen, Y.-S., and Tian, J.-G., J. Phys. Chem. (B), 2009, vol. 113, p. 9681. https://doi.org/10.1021/jp9004357

    Article  CAS  Google Scholar 

  118. Dreyer, D.R., Park, S., Bielawski, W., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228. https://doi.org/10.1039/B917103G

    Article  CAS  PubMed  Google Scholar 

  119. Lerf, A., He, H., Forster, M., and Klinowski, J., J. Phys. Chem. (B), 1998, vol. 102, p. 4477. https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  120. Bourlinos, A.B., Gournis, D., Petridis, D., Szabo, T., Szeri, A., and Dekany, I., Langmuir, 2003, vol. 19, p. 6050. https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  121. Wang, S., Chia, P.-J., Chua, L.-L., Zhao, L.-H., Png, R.-Q., Sivaramakrishnan, S., Zhou, M., Goh, R.G.-S., Friend, R.H., Wee, A.T.-S., and Ho, P.K.-H., Progr. Surf. Sci., 2008, vol. 20, p. 3440. https://doi.org/10.1002/adma.200800279

    Article  CAS  Google Scholar 

  122. Veca, L.M., Lu, F., Meziani, M.J., Cao, L., Zhang, P., Qi, G., Qu, L., Shrestha, M., and Sun, Y.-P., Chem. Commun., 2009, p. 2565. https://doi.org/10.1039/b900590k

  123. Salavagione, H.J., Gomez, M.A., Martinez, G., Macromolecules, 2009, vol. 42, p. 6331. https://doi.org/10.1021/ma900845w

    Article  CAS  Google Scholar 

  124. Cao, Y., Feng, J., and Wu, P., Carbon, 2010, vol. 48, p. 1683. https://doi.org/10.1016/j.carbon.2009.12.061

    Article  CAS  Google Scholar 

  125. Stankovich, S., Piner, R.D., Nguyen, S.B.T., and Ruoff, R.S., Carbon, 2006, vol. 44, p. 3342. https://doi.org/10.1016/j.carbon.2006.06.004

    Article  CAS  Google Scholar 

  126. Xu, C., Wu, X., Zhu, J., and Wang, X., Carbon, 2008, vol. 46, p. 386. https://doi.org/10.1016/j.carbon.2007.11.045

    Article  CAS  Google Scholar 

  127. Salvio, R., Krabbenborg, S., Naber, W.J.M., Velders, A.H., Reinhoudt, D.N., and van der Wiel, W.G., Chem. Eur. J., 2009, vol. 15, p. 8235. https://doi.org/10.1002/chem.200900661

    Article  CAS  PubMed  Google Scholar 

  128. Quintana, M., Spyrou, K., Grzelczak, M., Browne, W.R., Rudolf, P., and Prato, M., ACS Nano, 2010, vol. 4, p. 3527. https://doi.org/10.1021/nn100883p

    Article  CAS  PubMed  Google Scholar 

  129. Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., and Trapalis, C., Chem. Commun., 2010, vol. 46, p. 1766. https://doi.org/10.1039/b922081j

    Article  CAS  Google Scholar 

  130. Hamilton, C.E., Lomeda, J.R., Sun, Z., Tour, J.M., and Barron, A.R., Nano Res., 2010, vol. 3, p. 138. https://doi.org/10.1007/s12274-010-1007-3

    Article  CAS  Google Scholar 

  131. Shen, J., Hu, Y., Li, C., Qin, C., and Ye, M., Small, 2009, vol. 5, p. 82. https://doi.org/10.1002/smll.200800988

    Article  CAS  PubMed  Google Scholar 

  132. Si, Y. and Samulski, E.T., Nano Lett., 2008, vol. 8, p. 1679. https://doi.org/10.1021/nl080604h

    Article  CAS  PubMed  Google Scholar 

  133. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., and Tour, J.M., J. Am. Chem. Soc., 2008, vol. 130, p. 16201. https://doi.org/10.1021/ja806499w

    Article  CAS  PubMed  Google Scholar 

  134. Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., and Haddon, R.C., J. Am. Chem. Soc., 2009, vol. 131, p. 1336. https://doi.org/10.1021/ja8057327

    Article  CAS  PubMed  Google Scholar 

  135. Jin, Z., Lomeda, J.R., Price, B.K., Lu, W., Zhu, Y., and Tour, J.M., Chem. Mater., 2009, vol. 21, p. 3045. https://doi.org/10.1021/cm901601g

    Article  CAS  Google Scholar 

  136. Sharma, R., Baik, J.H., Perera, C.J., and Strano, M.S., Nano Lett., 2010, vol. 10, p. 398. https://doi.org/10.1021/nl902741x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V., and Tour, J.M., ACS Nano, 2010, vol. 4, p. 1949. https://doi.org/10.1021/nn901899j

    Article  CAS  PubMed  Google Scholar 

  138. Kostarelos, K., Bianco, A., and Prato, M., Nat. Nanotechn., 2009, vol, p. 627. https://doi.org/10.1038/nnano.2009.2414

  139. Shvedova, A.A., Kagan, V.E., and Fadeel, B., Annu. Rev. Pharmacol. Toxicol., 2010, vol. 50, p. 63. https://doi.org/10.1146/annurev.pharmtox.010909.105819

    Article  CAS  PubMed  Google Scholar 

  140. Monopoli, M.P., Bombelli, F.B., and Dawson, K.A., Nat. Nanotechn., 2011, vol. 6, p. 11. https://doi.org/10.1038/nnano.2011.267

    Article  CAS  Google Scholar 

  141. Krug, H.F. and Wick, P., Angew. Chem. Int. Ed., 2011, vol. 50, p. 1260. https://doi.org/10.1002/anie.201001037

    Article  CAS  Google Scholar 

  142. Ye, R. and Tour, J.M., ACS Nano, 2019, vol. 13, no. 10, p. 10872. https://doi.org/10.1021/acsnano.9b06778

    Article  CAS  PubMed  Google Scholar 

  143. Lammel, T., Boisseaux, P., Fernández-Cruz, M.-L., and Navas, J.M., Particle and Fibre Toxicology, 2013, vol. 10, p. 27. https://doi.org/10.1186/1743-8977-10-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lalwani, G., D’Agati, M., Khan, A.M., and Sitharaman, B., Adv. Drug Delivery Rev., 2016, vol. 105, p. 109. https://doi.org/10.1016/j.addr.2016.04.028

    Article  CAS  Google Scholar 

  145. Chongy, Y., Ge, C., Yang, Z., Garate, J.A., Gu, Z., Weber, J.K., Liu, J., and Zhou, R., ACS Nano, 2015, vol. 9, no. 6, p. 5713. https://doi.org/10.1021/nn5066606

    Article  CAS  Google Scholar 

  146. Bianko, A., Angew. Chem. Int. Ed., 2013, vol. 52, p. 4986. https://doi.org/10.1002/anie.201209099

    Article  CAS  Google Scholar 

  147. Egorova, M.N., Tarasova, L.A., Smagulova, S.A., Akhremenko, Ya.A., Vasil’eva, F.D., and Ilarova, V.I., Vestn. Sev.-Vost. Fed. Univ., 2019, no. 3, p. 16. https://doi.org/10.25587/SVFU.2019.3(16).39459

    Article  Google Scholar 

  148. Sanchez, V.C., Jachak, A., Hurt, R.H., and Kane, A.B., Chem. Res. Toxicol., 2012, vol. 25, p. 15. https://doi.org/10.1021/tx200339h

    Article  CAS  PubMed  Google Scholar 

  149. Feng, L. and Liu, Z., Nanomed., 2011, vol. 6, p. 317. https://doi.org/10.2217/nnm.10.158

    Article  CAS  Google Scholar 

  150. Bussy, C., Ali-Boucetta, H., and Kostarelos, K., Acc. Chem. Res., 2013, vol. 46, p. 692. https://doi.org/10.1021/ar300199e

    Article  CAS  PubMed  Google Scholar 

  151. Jastrzębska, A.M., Kurtycz, P., and Olszyna, A.R., J. Nanopart. Res., 2012, vol. 4, p. 1320. https://doi.org/10.1007/s11051-012-1320-8

    Article  CAS  Google Scholar 

  152. Hu, X. and Zhou, Q., Chem. Rev., 2013, vol. 113, p. 3815. https://doi.org/10.1021/cr300045n

    Article  CAS  PubMed  Google Scholar 

  153. Volkov, Y., McIntyre, J., and Prina-Mello, A., 2D Mater., 2017, vol. 4, p. 022001. https://doi.org/10.1088/2053-1583/aa5476

    Article  CAS  Google Scholar 

  154. Sasidharan, A., Panchakarla, L., Chandran, P., Menon, D., Nair, S., Rao, C., and Koyakutty, M., Nanoscale, 2011, vol. 3, p. 2461. https://doi.org/10.1039/С1NR10172B

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, Y., Ali, S.F., Dervish, E., Xu, Y., Li, Z., Casciano, D., and Biris, A.S., ACS Nano, 2010, vol. 4, p. 3181. https://doi.org/10.1021/nn1007176

    Article  CAS  PubMed  Google Scholar 

  156. Lu, M., Zhang, Y., Liang, L., Wei, M., Hu, W., Li, X., and Huang, Q., Nanoscale, 2012, vol. 4, p. 3861. https://doi.org/10.1039/с2nr30407d

    Article  Google Scholar 

  157. Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., and Fan, C., ACS Nano, 2010, vol. 4, p. 4317. https://doi.org/10.1021/nn101097v

    Article  CAS  PubMed  Google Scholar 

  158. Chang, Y., Yang, S.T., Liu, J.H., Dong, E., Wang, Y., Cao, A., Liu, Y., and Wang, H., Toxicol. Lett., 2011, vol. 200, p. 201. https://doi.org/10.1016/j.toxlet.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  159. Yue, H., Wei, W., Yue, Z., Wang, B., Luo, N., Gao, Y., Ma, D., Ma, G., and Su, Z., Biomaterials, 2012, vol. 33, p. 4013. https://doi.org/10.1016/j.biomaterials.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  160. Li, Y., Liu, Y., Fu, Y., Wei, T., Guyader, L.L., Gao, G., Liu, R.-S., Chang, Y.-Z., and Chen, C., Biomaterials, 2012, vol. 33, p. 402. https://doi.org/10.1016/j.biomaterials.2011.09.091

    Article  CAS  PubMed  Google Scholar 

  161. Wojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., Chu, P.K., and Borowiak-Palen, E., Colloids Surf. (B), 2012, vol. 89, p. 79. https://doi.org/10.1016/j.colsurfb.2011.08.026

    Article  CAS  Google Scholar 

  162. Lin, J., Chen, X., ndHuang, P., Adv. Drug Deliver. Rev., 2016, vol. 105, p. 242. https://doi.org/10.1016/j.addr.2016.05.013

    Article  CAS  Google Scholar 

  163. Huang, P., Wang, S., Wang, X., Shen, G., and Lin, J., J. Biomed. Nanotechnol., 2015, vol. 11, no. 1, p. 117. https://doi.org/10.1166/jbn.2015.2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Agharkar, M., Kochrekar, S., Hidouri, S., and Azeez, M.A., Mater. Res. Bull., 2014, vol. 59, p. 323. https://doi.org/10.1016/j.materresbull.2014.07.051

    Article  CAS  Google Scholar 

  165. Zhang, H., Gruner, G., and Zhao, Y., J. Mater. Chem. (B), 2013, vol. 1, p. 2542. https://doi.org/10.1039/C3TB2045G

    Article  CAS  Google Scholar 

  166. Sasidharan, A., Panchakarla, L.S., Sadanandan, A.R., Ashokan, A., Chandran, P., Girish, C.M., Menon, D., Nair, S.V., Rao, C.N., and Koyakutty, M., Small, 2012, vol. 8, p. 1251. https://doi.org/10.1002/smll.201102393

    Article  CAS  PubMed  Google Scholar 

  167. Liao, K.H., Lin, Y.S., Macosko, C.W., and Haynes, C.L., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 2607. https://doi.org/10.1021/am200428v

    Article  CAS  PubMed  Google Scholar 

  168. Singh, S.K., Singh, M.K., Kulkarni, P.P., Sonkar, V.K., Grácio, J.J., and Dash, D., ACS Nano, 2012, vol. 6, p. 2731. https://doi.org/10.1021/nn300172t

    Article  CAS  PubMed  Google Scholar 

  169. Singh, S.K., Singh, M.K., Nayak, M.K., Kumari, S., Shrivastava, S., Grácio, J.J.A., and Dash, D., ACS Nano, 2011, vol. 5, p. 4987. https://doi.org/10.1021/nn201092p

    Article  CAS  PubMed  Google Scholar 

  170. Park, S., Mohanty, N., Suk, J.W., Nagaraja, A., An, J., Piner, R.D., Cai, W., Dreyer, D.R., Berry, V., and Ruoff, R.S., Progr. Surf. Sci., 2010, vol. 2, p. 1736. https://doi.org/10.1002/adma.200903611

    Article  CAS  Google Scholar 

  171. Hess, L.H., Jansen, M., Maybeck, V., Hauf, M.V., Seifert, M., Stutzmann, M., Sharp, I.D., Offenhäusser, A., and Garrido, J.A., Progr. Surf. Sci., 2011, vol. 2, p. 5045. https://doi.org/10.1002/adma.201102990

    Article  CAS  Google Scholar 

  172. Li, N., Zhang, X., Song, Q., Su, R., Zhang, Q., Kong, T., Liu, L., Jin, G., Tang, M., and Cheng, G., Biomaterials, 2011, vol. 32, p. 9374. https://doi.org/10.1016/j.biomaterials.2011.08.065

    Article  CAS  PubMed  Google Scholar 

  173. Li, R., Mansukhani, N.D., Guiney, L.M., Ji, Zh., Zhao, Y., Chang, C.H., French, C.T., Miller, J.F., Hersam, M.C., Nel, A.E., and Xia, T., ACS Nano, 2016, vol. 10, no. 12, p. 10966. https://doi.org/10.1021/acsnano.6b05692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nayak, T.R., Andersen, H., Makam, V.S., Khaw, C., Bae, S., Xu, X., Ee, P.-L.R., Ahn, J.-H., Hong, B.H., Pastorin, G., and Özyilmaz, B., ACS Nano, 2011, vol. 5, p. 4670. https://doi.org/10.1021/nn200500h

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lisichkin.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, I.I., Lisichkin, G.V. Chemical Modification of Graphene. Russ J Gen Chem 90, 1921–1943 (2020). https://doi.org/10.1134/S1070363220100151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100151

Keywords:

Navigation