Skip to main content

Phenolcarboxylic Acids in the Reaction with Electrogenerated Hydroperoxyl Radical

Abstract

Using the chronovoltammetric method, it has been shown that the reduction of oxygen on a mercury electrode in the presence of phenolcarboxylic acids in an acidic medium occurs as reversible electrode process followed by rate-limiting chemical reaction involving the hydroperoxyl radical. The rate constants of the phenolcarboxylic acids reaction with the radical have been calculated using the theory of electrode process followed by chemical reaction. The suggested reaction mechanism (electron transfer from the acid molecular form to the radical) has been confirmed by the correlation between the experimental rate constants and the ionization potentials of phenolcarboxylic acids simulated using the DFT method.

This is a preview of subscription content, access via your institution.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Perevozkina, M.G., Testirovanie antioksidantnoi aktivnosti polifunktsional’nykh soedinenii kineticheskimi metodami (Testing the Antioxidant Activity of Polyfunctional Compounds by Kinetic Methods), Novosibirsk: SibAK, 2014.

  2. Men’shchikova, E.B., Lankin, V.Z., and Kandalintseva, N.V.,Phenolic Antioxidants in Biology and Medicine. Structure, Properties, Mechanisms of Action, Saarbrücken: Lap Lambert Academic Publishing, 2012.

  3. Galano, A. and Perez-Gonzalez, A., Theor. Chem. Accounts, 2012, vol. 131, no. 9, p. 1. https://doi.org/10.1007/s00214-012-1265-0

    CAS  Article  Google Scholar 

  4. Marković, Z., Ðorović, J., Dimitrić Marković, J.M., Živić, M., and Amić, D., Monatsh. Chem., 2014, vol. 145, no. 6, p. 953. https://doi.org/10.1007/s00706-014-1163-3

    CAS  Article  Google Scholar 

  5. Marino, T., Galano, A., and Russo, N., J. Phys. Chem., 2014, vol. 118, no. 35, p. 10380. https://doi.org/10.1021/jp505589b

    CAS  Article  Google Scholar 

  6. Sevgi, K., Tepe, B., and Sarikurkcu, C., Food Chem. Toxicol., 2015, vol. 77, p. 12.

    CAS  Article  Google Scholar 

  7. Medina, M.E., Galano, A., and Trigos, Á., J. Phys. Chem. (B), 2018, vol. 122, no. 30, p. 7514. https://doi.org/10.1021/acs.jpcb.8b04619

    CAS  Article  Google Scholar 

  8. Vermerris, W. and Nicholson, R., Phenolic Compound Biochemistry, Dodrecht: Springer, 2006.

  9. Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: Mir: Binom Laboratoriya Znanii, 2003.

  10. Heyrovský, M. and Vavřička, S., J. Electroanal. Chem., 1993, vol. 353, p. 335.

    Article  Google Scholar 

  11. Heyrovský, M. and Vavřička, S., J. Electroanal. Chem., 1992, vol. 332, p. 309.

    Article  Google Scholar 

  12. Hayyan, M., Hashim, M.A., and Alnashef, I.M., Chem. Rev., 2016, vol. 116, no. 5, p. 3029. https://doi.org/10.1021/acs.chemrev.5b00407

    CAS  Article  PubMed  Google Scholar 

  13. Tur’yan, Y.I., Gorenbein, P., and Kohen, R., J. Electroanal. Chem., 2004, vol. 571, no. 2, p. 183. https://doi.org/10.1016/j.jelechem.2004.05.008

    CAS  Article  Google Scholar 

  14. Marvin 18.14. ChemAxon. https://www.chemaxon.com

  15. Bo-Tao, Z., Li-Xia, Z., and Jin-Ming, L., J. Environ. Sci., 2008, vol. 20, no. 8, p. 1006. https://doi.org/10.1016/s1001-0742(08)62200-7

    Article  Google Scholar 

  16. Korotkova, E.I., Karbainov, Y.A., and Avramchik, O.A., Anal. Bioanal. Chem., 2003, vol. 375, p. 465. https://doi.org/10.1007/s00216-002-1687-y

    CAS  Article  PubMed  Google Scholar 

  17. Sazhina, N.N., Misin, V.M., and Korotkova, E.I., Khim. Rastit. Syr’ya, 2010, no. 4, p. 77.

    Google Scholar 

  18. Mairanovskii, C.G., Kataliticheskie i kineticheskie toki v polyarografii (Catalytic and Kinetic Currents in Polarography), Moscow: Nauka, 1966.

  19. Nicholson, R.S. and Shain, I., Anal. Chem., 1964, vol. 36, no. 4, p. 706. https://doi.org/10.1021/ac60210a007

    CAS  Article  Google Scholar 

  20. Galus, Z., Fundamentals of Electrochemical Analysis, Ellis Horwood, 1976.

  21. Gorokhovskaya, V.I. and Gorokhovskii, V.M., Praktikum po elektrokhimicheskim metodam analiza (Workshop on Electrochemical Analysis Methods), Moscow: Vysshaya Shkola, 1983.

  22. Korotkova, E.I., Doctoral (Chem.) Dissertation, Tomsk, 2009.

  23. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., and Russo, N., Annu. Rev. Food Sci. Technol., 2016, vol. 7, p. 335. https://doi.org/10.1146/annurev-food-041715-033206

    CAS  Article  PubMed  Google Scholar 

  24. Milenković, D., Yorović, J., Jeremić, S., Marković, J.M.D., Avdović, E.H., and Marković, Z., J. Chem., 2017, vol. 2017, p. 1. https://doi.org/10.1155/2017/5936239

    CAS  Article  Google Scholar 

  25. Volkov, V.A. and Misin, V.M., Kinetics and Catalysis, 2015, vol. 56, no. 1, p. 43. https://doi.org/10.1134/S0023158415010139

    CAS  Article  Google Scholar 

  26. Mazzone, G., Russo, N., and Toscano, M., Comput. Theoret. Chem., 2016, vol. 1077, p. 39. https://doi.org/10.1016/j.comptc.2015.10.011

    CAS  Article  Google Scholar 

  27. Belaya, N.I., Belyi, A.V., Zarechnaya, O.M., Scherbakov, I.N., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1351. https://doi.org/10.1134/S1070363218070010

    CAS  Article  Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision B.01 Gaussian, Inc., WallingfordCT, 2010.

  29. Galano, A. and Alvarez-Idaboy, J.R., Int. J. Quantum. Chem., 2019, vol. 119, p. 1. https://doi.org/10.1002/qua.25665

    CAS  Article  Google Scholar 

  30. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. (B), 2009, vol. 113, p. 6378. https://doi.org/10.1021/jp810292n

    CAS  Article  Google Scholar 

  31. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. https://doi.org/10.1021/cr9904009

    CAS  Article  PubMed  Google Scholar 

  32. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier Science, 2003.

  33. GOST 32937–2014., Moscow: Standartinform, 2016.

  34. Henze, G. and Thomas, F.G., Introduction to Voltammetric Analysis: Theory and Practice, Australia: CSIRO, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Belaya.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belaya, N.I., Belyi, A.V., Zarechnaya, O.M. et al. Phenolcarboxylic Acids in the Reaction with Electrogenerated Hydroperoxyl Radical. Russ J Gen Chem 90, 1823–1830 (2020). https://doi.org/10.1134/S1070363220100023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220100023

Keywords:

  • phenolcarboxylic acid
  • hydroperoxyl radical
  • antioxidant
  • ionization potential