Skip to main content
Log in

Structural and Morphological Features of Polycrystalline Aluminum Oxide Surface after Nanocoating with Titanium Oxide of Different Thickness

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Using the molecular layering method, titanium oxide coatings were synthesized on the surface of polycrystalline aluminum oxide plates by alternating treatment with titanium tetrachloride and water vapors. It was shown by means of diffuse reflection electron spectroscopy that at different nanocoating thickness, surface complexes differing in structure are formed: distorted octahedral (alumotitanate), those with tetrahedral titanium coordination, and polyhedra with anatase-like environment of the central atom. The surface morphology changes during the synthesis and after 600 layering cycles the titanium oxide coating covers the entire surface of the initial substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kondratenko, A.N. and Golubkova, T.A., Konstruktsii iz kompozitsionnykh materialov, 2009, no. 1, p. 24.

    Google Scholar 

  2. Sokol, V.A., Yakovtseva, V.A., and Shiminovich, D., Dokl. BGUIR, 2012, no. 2, vol. 64, p. 21.

    Google Scholar 

  3. Mazalov, Yu.A., Fedorov, A.V., and Bersh, A.V., Tekhnol. Metal., 2008, p. 8.

  4. Muslimov, A.E., Asadchikov, V.E., Butashin, A.V., Vlasov, V.P., Deryabin, A.N., Roshchin, B.S., Sulyanov, S.N., and Kanevsky, V.M., Crystallogr. Rep., 2016, vol. 61, no. 5, p. 730. https://doi.org/10.7868/S0023476116050143

    Article  CAS  Google Scholar 

  5. Savruk, E.V. and Smirnov, S.V., Izv. Vyssh. Uchebn. Zaved., Fizika, 2009, vol. 52, no. 11/2, p. 24.

    Google Scholar 

  6. Malygin, A.A., Nanomaterialy: svoistva i ikh perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Moscow: Nauchnyi Mir, 2015, p. 84.

  7. Chiappim, W., Testoni, G.E., de Lima, J.S.B., Medeiros, H.S., Sávio Pessoa, R., Grigorov, K.G., Vieira, L., and Maciel, H.S., Brazil. J. Phys., 2016, vol. 46, no. 1, p. 56. https://doi.org/10.1007/s13538-015-0383-2

    Article  CAS  Google Scholar 

  8. Malkov, A.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2010, vol. 83, no. 9, p. 1511. https://doi.org/10.1134/S1070427210090016

    Article  CAS  Google Scholar 

  9. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1176. https://doi.org/10.1134/S1070363210060216

    Article  CAS  Google Scholar 

  10. Obvintseva, L.A., Ross. Khim. Zh., 2008, vol. 52, no. 2, p. 113.

    CAS  Google Scholar 

  11. Melike, A., Meryem, S., Deniz, P., Erdogana, A., Saya, Z., Yildirimb, C., Birerbc, O., and Ozensoy, E., Appl. Surface Sci., 2014, vol. 318, p. 142. https://doi.org/10.1016/j.apsusc.2014.02.065

    Article  CAS  Google Scholar 

  12. Ramamoorthy, P., Dutta, P.K., and Akbar, S.A., J. Mater. Sci., 2003, no. 38, p. 4271. https://doi.org/10.1023/A:1026370729205

    Article  CAS  Google Scholar 

  13. Muthukrishnan, K., Vanaraja, M., Boomadevi, S., Karn, R.K., Rayappan, J.B., Singh, V., and Pandiyan, K., J. Mater. Sci. Mater. Electronics, 2015, p. 5135. https://doi.org/10.1007/s10854-015-3041-0

  14. Patil, S.J., Patil, A.V., Dighavkar, C.G., Thakare, K.S., Borase, R.Y., Nandre, S.J., Deshpande, N.G., and Ahire, R.R., Front. Mater. Sci., 2015, vol. 9, no. 1, p. 14. https://doi.org/10.1007/s11706-015-0279-7

    Article  Google Scholar 

  15. Artem’ev, Yu.A. and Ryabchuk, V.K., Vvedenie v geterogennyi fotokataliz (Introduction to Heterogeneous Photocatalysis), St. Petersburg: SPbGU, 1999.

  16. Kim, D.H., Kim, W.S., Kim, S., and Hong, S.H., ACS Appl. Mater. Interf., 2014, vol 6, no. 15, p. 11817. https://doi.org/10.1021/am501656r

    Article  CAS  Google Scholar 

  17. Mokrushin, A.S., Simonenko, E.P., Simonenko, N.P., Akkuleva, K.T., Antipov, V.V., Zaharova, N.V., Malygin, A.A., Bukunov, K.A., Sevastyanov, V.G., and Kuznetsov, N.T., Appl. Surface Sci., 2019, vol. 463, p. 197. https://doi.org/10.1016/j.apsusc.2018.08.208

    Article  CAS  Google Scholar 

  18. Galstyan, V., Comini, E., Faglia, G., and Sberveglieri, G., Sensors, 2013, vol. 13, no. 1, p. 14813. https://doi.org/10.3390/s131114813

    Article  CAS  PubMed  Google Scholar 

  19. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vapor Depos., 2015, vol. 21, nos. 10–12, p. 216. https://doi.org/10.1002/cvde.201502013

    Article  CAS  Google Scholar 

  20. Koshtyal, Yu.M., Malkov, A.A., Vasilyeva, K.L., Zakharova, N.V., and Malygin, A.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 2, p. 231. https://doi.org/10.1134/S1070363213020011

    Article  CAS  Google Scholar 

  21. Yavorskii, B.M., Detlaf, A.A., and Lebedev, A.K., Physics Handbook, Moscow: Oniks, Mir i Obrazovanie, 2006.

  22. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Phys. Chem., 2009, vol. 83, no. 4, p. 642. https://doi.org/10.1134/S0036024409040219

    Article  CAS  Google Scholar 

  23. Malygin, A.A., Malkov, A.A., and Sosnov, E.A., Russ. Chem. Bull., 2017, no. 11, p. 1939. https://doi.org/10.1007/s11172-017-1971-9

    Article  CAS  Google Scholar 

  24. Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., and Wöll, C., Phys. Rev. Lett., 2011, vol. 106, p. 138. https://doi.org/10.1103/PhysRevLett.106.138302

    Article  CAS  Google Scholar 

  25. Li, S.C. and Diebold, U., J. Am. Chem. Soc., 2010, vol. 132, p. 64. https://doi.org/10.1021/ja907865t

    Article  CAS  PubMed  Google Scholar 

  26. Glazkova, N.I., Nikitin, K.V., Kataeva, G.V., Rudakova, A.V., and Ryabchuk, V.K., Fundamental. Issled., 2013, no. 10, p. 1955.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Kochetkova for the AFM measurements at the Center for Collective Use “Chemical Assembly of Nanomaterials” of St. Petersburg State Institute of Technology.

Funding

The presented results were obtained with partial financial support from the Ministry of Education and Science (unique project identifier RFMEFI60719X0328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zakharova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, N.V., Akkuleva, K.T. & Malygin, A.A. Structural and Morphological Features of Polycrystalline Aluminum Oxide Surface after Nanocoating with Titanium Oxide of Different Thickness. Russ J Gen Chem 90, 1670–1676 (2020). https://doi.org/10.1134/S1070363220090133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220090133

Keywords:

Navigation