Skip to main content
Log in

Vaporization and Thermodynamic Properties of GdFeO3 and GdCoO3 Complex Oxides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The processes of gadolinium ferrite and gadolinium cobaltite vaporization was studied. It was shown that the predominant components of vapor are atomic iron and cobalt, which are characteristic for the vaporization of individual iron and cobalt oxides, respectively. The activities of iron and cobalt oxides in GdFeO3 and GdCoO3 were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Moure, C. and Peña, O., Prog. Solid State Chem., 2015, vol. 43, no. 4, p. 123. https://doi.org/10.1016/j.progsolidstchem.2015.09.001

    Article  CAS  Google Scholar 

  2. Mathur, S., Shen, H., Lecerf, N., Kjekshus, A., Fjellvag, H., and Goya, G.F., Adv. Mater., 2002, vol. 14, no. 19, p. 1405. https://doi.org/10.1002/1521-4095(20021002)14:19<1405::AID-ADMA1405>3.0.CO;2-B

    Article  CAS  Google Scholar 

  3. Xu, H., Hu, X., and Zhang, L.Z., Cryst. Growth. Des., 2008, vol. 8, no. 7, p. 2061. https://doi.org/10.1021/cg800014b

    Article  CAS  Google Scholar 

  4. Zhao, Z.Y., Wang, X.M., Fan, C., Tao, W., Liu, X.G., Ke, W.P., Zhang, F.B., Zhao, X., and Sun, X.F., Phys. Rev. B, 2011, vol. 83, no. 1, p. 014414. https://doi.org/10.1103/physrevb.83.014414

    Article  Google Scholar 

  5. Singh, N., Rhee, J.Y., and Auluck, S.J., Korean Phys. Soc., 2008, vol. 53, no. 2, p. 806. https://doi.org/10.3938/jkps.53.806

    Article  CAS  Google Scholar 

  6. Hosoya, Y., Itagaki, Y., Aono, H., and Sadaoka, Y., Sensors Actuators B: Chem., 2005, vol. 108, p. 198. https://doi.org/10.1016/j.snb.2004.10.059

    Article  CAS  Google Scholar 

  7. Jacob, K., Rajitha, G., and Dasgupta, N., Indian J. Eng. Mater. Sci., 2012, vol. 19, p. 47. http://nopr.niscair.res.in/handle/123456789/13792

    CAS  Google Scholar 

  8. Wang, W., Li, S., Wen, Y., Gong, M., and Zhang, L., Acta Phys. Chim., 2008, vol. 24, no. 10, p. 1761. https://doi.org/10.1016/S1872-1508(08)60072-8

    Article  CAS  Google Scholar 

  9. Li, L., Liu, X., Zhang, Y., Nuhfer, N.T., Barmak, K., Salvador, P.A., and Rohrer, G.S., Appl. Mater. Interfaces, 2013, vol. 5, p. 5064. https://doi.org/10.1021/am4008837

    Article  CAS  Google Scholar 

  10. Zhou, Z., Guo, L., Yang, H., Liu, Q., and Ye, F., J. Alloys Compd., 2014, vol. 583, p. 21. https://doi.org/10.1016/j.jall-com.2013.08.129

    Article  CAS  Google Scholar 

  11. Konichenko, T.S., Liberman, E.Yu., Nefedova, R.V., Mikhailichenko, A.I., and Petrov, A.Yu., Usp. Khim. Khim. Tekhnol., 2015, vol. 29, no. 3(162), p. 125.

    Google Scholar 

  12. Li, X., and Duan, Z.-Q., Mater. Lett., 2012, vol. 89, p. 262. https://doi.org/10.1016/j.matlet.2012.08.140

    Article  CAS  Google Scholar 

  13. Lenka, R.K., Mahata, T., Patro, P.K., Tyagi, A.K., and Sinha, P.K.,J. Alloys Comp., 2012, vol. 537, p. 100. https://doi.org/10.1016/j.jallcom.2012.05.061

    Article  CAS  Google Scholar 

  14. Yafarova, L.V., Chislova, I.V., Zvereva, I.A., Kryuchkova, T.A., Kost, V.V., and Sheshko, T.F., J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, p. 264. https://doi.org/10.1007/s10971-019-05013-3

    Article  CAS  Google Scholar 

  15. Sheshko, T.F., Kryuchkova, T.A., Sharaeva, A.A., Serov, Y.M., Yafarova, L.V., and Zvereva, I.A., J. Phys. Conf., 2019, vol. 1310, no. 1, p. 012007. https://doi.org/10.1088/1742-6596/1310/1/012007

    Article  CAS  Google Scholar 

  16. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R. D., and Mallard, W.G., J. Phys. Chem. Ref. Data, 1988, vol. 17. Suppl. 1, p. 1.

    Article  Google Scholar 

  17. Kazenas, E.K. and Tagirov, V.K., Metally, 1995, vol. 2, p. 31.

    Google Scholar 

  18. Sidorov, L.N. and Lopatin, S.I., High-Temperature Chemistry Applications of Mass Spectrometry, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Spectroscopy and Spectrometry, New York: Elsevier, 2017, 3 ed., p. 95.

  19. Thermodynamic Properties of Individual Substances. Electronic Reference Book, vol. 5. The Elements Zn, Cu, Fe, Co, Ni, and Their Compounds. http://www.chem.msu.su/rus/tsiv/

  20. Sevastyanov, V. G., Simonenko, E.P., Simonenko, N.P., Stolyarova, V.L, Lopatin, S.I., and Kuznetsov, N.T., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 26, p. 4636. https://doi.org/10.1002/ejic.201300253

    Article  CAS  Google Scholar 

  21. Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N., and Folomeikin, Yu.I., Rapid Commun. Mass Spectrom., 2017, vol. 31, no. 6, p. 538. https://doi.org/10.1002/rcm.7809

    Article  CAS  PubMed  Google Scholar 

  22. Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N. and Folomeikin, Y.I., Rapid Commun. Mass Spectrom., 2017, vol. 31, no. 13, p. 1137. https://doi.org/10.1002/rcm.7892

    Article  CAS  PubMed  Google Scholar 

  23. Toropov, N.A., Barzakovskii, V.P., Bondar, I.A., and Udalov, Yu.P.,Diagrammy sostoyaniya silikatnykh sistem. Spravochnik (Phase Diagrams of Silicate Systems. Handbook), Leningrad: Nauka, 1969, Iss. 2.

  24. Chislova, I.V., Matveeva, A.A., Volkova, A.V., and Zvereva, I.A.,Glas. Phys. Chem., 2011, vol. 37, no. 6, p. 653. https://doi.org/10.1134/S1087659611060071

    Article  CAS  Google Scholar 

  25. Termodinamicheskie svoistva individual’nykh veschestv (Thermodynamic Properties of Individual Substances), Glushko, V.P., Ed., Moscow: AN SSSR, 1978–1982, vols. 1–4.

  26. Stolyarova, V.L., Lopatin, S.I., Fabrichnaya, O.B., and Shugurov, S.M., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 1, p. 109. https://doi.org/10.1002/rcm.6764

    Article  CAS  PubMed  Google Scholar 

  27. Lopatin, S.I. and Shugurov, S.M., J. Chem. Thermodyn., 2014, vol. 56, no. 5, p. 85. https://doi.org/10.1016/j.jct.2014.01.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project No. 18-33-01209) using the equipment of the Resource Center “X-ray diffraction research methods” of the Interdisciplinary Resource Center in the direction of “Nanotechnology” and the Center for Innovative Technologies of Composite Nanomaterials of the Scientific Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lopatin.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatin, S.I., Zvereva, I.A. & Chislova, I.V. Vaporization and Thermodynamic Properties of GdFeO3 and GdCoO3 Complex Oxides. Russ J Gen Chem 90, 1495–1500 (2020). https://doi.org/10.1134/S1070363220080174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220080174

Keywords:

Navigation