N-Hydroxymethylation of 3-Aryl-2-cyanoprop-2-enethioamides

Abstract

Hydroxymethylation of (E)-3-aryl-2-cyanoprop-2-enethioamides with an aqueous alcoholic solution of formaldehyde has afforded (E)-3-aryl-N-(hydroxymethyl)-2-cyanoprop-2-enethioamides. The predictive analysis of the biological activity of the obtained compounds in silico has been carried out.

This is a preview of subscription content, log in to check access.

Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. 1

    Litvinov, V.P., Russ. Chem. Rev., 1999, vol. 68, no. 9, p. 737. https://doi.org/10.1070/RC1999v068n09ABEH000533

    CAS  Article  Google Scholar 

  2. 2

    Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760

    CAS  Article  Google Scholar 

  3. 3

    Magerramov, A.M., Shikhaliev, N.G., Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., α-Tsianotioatsetamid (α-Cyanothioacetamide), Moscow: Tekhnosfera, 2018.

  4. 4

    Litvinov, V.P., Russ. Chem. Bull., 1998, vol. 47, no. 11, p. 2053. https://doi.org/10.1007/BF02494257

    Article  Google Scholar 

  5. 5

    Litvinov, V.P., Krivokolysko, S.G., and Dyachenko, V.D., Chem. Heterocycl. Compd., 1999, vol. 35, no. 5, p. 509. https://doi.org/10.1007/BF02324634

    CAS  Article  Google Scholar 

  6. 6

    Litvinov, V.P., Dotsenko, V.V., and Krivokolysko, S.G., Russ. Chem. Bull., 2005, vol. 54, no. 4, p. 864. https://doi.org/10.1007/s11172-005-0333-1

    CAS  Article  Google Scholar 

  7. 7

    Litvinov, V.P., Ross. Khim. Zh., 2005, vol. 49, no. 6, p. 11.

    CAS  Google Scholar 

  8. 8

    Litvinov, V.P., Dotsenko, V.V., and Krivokolysko, S.G., Adv. Heterocycl. Chem., 2007, vol. 93, p. 117. https://doi.org/10.1016/S0065-2725(06)93003-7

    CAS  Article  Google Scholar 

  9. 9

    Litvinov, V.P., Russ. Chem. Rev., 2006, vol. 75, no. 7, p. 577. https://doi.org/10.1070/RC2006v075n07ABEH003619

    CAS  Article  Google Scholar 

  10. 10

    Dotsenko, V.V., Frolov, K.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2015, vol. 51, no. 2, p. 109. https://doi.org/10.1007/s10593-015-1668-7

    CAS  Article  Google Scholar 

  11. 11

    Dotsenko, V.V., Frolov, K.A., Chigorina, E.A., Khrustaleva, A.N., Bibik, E.Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2019, vol. 68, no. 4, p. 691. https://doi.org/10.1007/s11172-019-2476-5

    CAS  Article  Google Scholar 

  12. 12

    Dotsenko, V.V., Frolov, K.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2012, vol. 48, no. 4, p. 642. https://doi.org/10.1007/s10593-012-1038-7

    CAS  Article  Google Scholar 

  13. 13

    Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., and Litvinov, V.P., Russ. Chem. Bull., 2009, vol. 58, no. 7, p. 1479. https://doi.org/10.1007/s11172-009-0199-8

    CAS  Article  Google Scholar 

  14. 14

    Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Russ. Chem. Bull., 2007, vol. 56, no. 7, p. 1474. https://doi.org/10.1007/s11172-007-0226-6

    CAS  Article  Google Scholar 

  15. 15

    Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Monatsh. Chem., 2006, vol. 137, no. 8, p. 1089. https://doi.org/10.1007/s00706-006-0512-2

    CAS  Article  Google Scholar 

  16. 16

    Frolov, K.A., Dotsenko, V.V., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 48, no. 10, p. 1555. https://doi.org/10.1007/s10593-013-1173-9

    CAS  Article  Google Scholar 

  17. 17

    Shobana, N. and Farid, P., Compr. Heterocycl. Chem. III, 2008, vol. 9, p. 457. https://doi.org/10.1016/B978-008044992-0.00809-9

    Article  Google Scholar 

  18. 18

    Bermello, J.C., Piñeiro, R.P., Fidalgo, L.M., Cabrera, H.R., and Navarro, M.S., The Open Med. Chem. J., 2011, vol. 5, p. 51. https://doi.org/10.2174/1874104501105010051

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Rodríguez, H., Suárez, M., and Albericio, F., Molecules, 2012, vol. 17, no. 7, p. 7612. https://doi.org/10.3390/molecules17077612

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Hamoud, F., Ramsh, S.M., Fundamenskii, V.S., Gurzhii, V.V., Brusina, M.A., Arkhipova, N.G., Sedunova, P.A., Medvedskii, N.L., and Khrabrova, E.S., Russ. J. Org. Chem., 2016, vol. 52, no. 1, p. 121. https://doi.org/10.1134/S1070428016010231

    CAS  Article  Google Scholar 

  21. 21

    Yamada, T., Nobuhara, Y., Yamaguchi, A., and Ohki, M., J. Med. Chem., 1982, vol. 25, no. 8, p. 975. https://doi.org/10.1021/jm00350a018

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Yamamoto, S., Toida, I., Watanabe, N., and Ura, T., Antimicrob. Agents Сhemother., 1995, vol. 39, no. 9, p. 2088. https://doi.org/10.1128/AAC.39.9.2088

    CAS  Article  Google Scholar 

  23. 23

    Pastor, A., Machelart, A., Li, X., Willand, N., Baulard, A., Brodin, P., Gref, R., and Desmaёle, D., Org. Biomol. Chem., 2019, vol. 17, no. 20, p. 5129. https://doi.org/10.1039/C9OB00680J

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Böhme, H. and Hotzel, H.-H., Arch. Pharm., 1967, vol. 300, no. 3, p. 241. https://doi.org/10.1002/ardp.19673000309

    Article  Google Scholar 

  25. 25

    Böhme, H., Ahrens, K.H., and Hotzel, H.-H., Arch. Pharm., 1974, vol. 307, no. 10, p. 748. https://doi.org/10.1002/ardp.19743071004

    Article  Google Scholar 

  26. 26

    Trivedi, J.P. and Sanghvi, J.S., J. Ind. Chem. Soc., 1978, vol. 55, no. 2, p. 195.

    CAS  Google Scholar 

  27. 27

    Giordano, C. and Belli, A., Synthesis, 1975, vol. 1975, no. 12, p. 789. https://doi.org/10.1055/s-1975-23928

    Article  Google Scholar 

  28. 28

    Kaldrikyan, M.A., Minasyan, N.S., and MelikOgandzanyan, R.G., Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 305. https://doi.org/10.1134/S1070363216020171

    CAS  Article  Google Scholar 

  29. 29

    Liu, C.Y., Hu, C.C., Yeh, K.Y., and Chen, M.J., Fresenius J. Anal. Chem., 1991, vol. 339, no. 12, p. 877. https://doi.org/10.1007/BF00321669

    CAS  Article  Google Scholar 

  30. 30

    Liu, C.Y., Chang, H.T., and Hu, C.C., Inorg. Chim. Acta, 1990, vol. 172, no. 2, p. 151. https://doi.org/10.1016/S0020-1693(00)80850-6

    CAS  Article  Google Scholar 

  31. 31

    Liu, C.Y., Chen, M.J., and Chai, T.J., J. Chromatogr. (A), 1991, vol. 555, nos. 1–2, p. 291. https://doi.org/10.1016/S0021-9673(01)87192-2

    CAS  Article  Google Scholar 

  32. 32

    Martinovich, Y.A., Ramsh, S.M., Hamoud, F., Fundamenskii, V.S., Gurzhii, V.V., Zakharov, V.I., and Khrabrova, E.S., Russ. J. Org. Chem., 2018, vol. 54, no. 6, p. 878. https://doi.org/10.1134/S107042801806009X

    CAS  Article  Google Scholar 

  33. 33

    Drach, B.S., Brovarets, V.S., and Smolii, O.B., Sintezy azotsoderzhashchikh geterotsiklicheskikh soedinenii na osnove amidoalkiliruyushchikh agentov (Syntheses of Nitrogen-Containing Heterocyclic Compounds Based on Amidoalkylating Agents), Kiev: Naukova Dumka, 1992.

  34. 34

    Lazarev, D.B., Ramsh, S.M., and Ivanenko, A.G., Russ. J. Gen. Chem., 2000, vol. 70, no. 3, p. 442.

    CAS  Google Scholar 

  35. 35

    Simon, L., Talpas, G.S., Fülöp, F., Bernáth, G., and Sohár, P., Acta Chim. Hung., 1985, vol. 118, no. 1, p. 37.

    CAS  Google Scholar 

  36. 36

    Giordano, C., Synthesis, 1972, vol. 1972, no. 1, p. 34. https://doi.org/10.1055/s-1972-21822

    Article  Google Scholar 

  37. 37

    Böhme, H. and Ahrens, K.H., Tetrahedron Lett., 1971, vol. 12, no. 2, p. 149. https://doi.org/10.1016/S0040-4039(01)96382-8

    Article  Google Scholar 

  38. 38

    Böhme, H. and Ahrens, K.H., Arch. Pharm., 1974, vol. 307, no. 11, p. 828. https://doi.org/10.1002/ardp.19743071104

    Article  Google Scholar 

  39. 39

    Böhme, H. and Ahrens, K.H., US Patent 3718659, 1973.

  40. 40

    Giordano, C., Belli, A., Erbea, R., and Panossian, S., Synthesis, 1979, vol. 1979, no. 10, p. 801. https://doi.org/10.1055/s-1979-28836

    Article  Google Scholar 

  41. 41

    Giordano, C. and Belli, A., Synthesis, 1977, vol. 1977, no. 3, p. 193. https://doi.org/10.1055/s-1977-24319

    Article  Google Scholar 

  42. 42

    Giordano, C., Belli, A., and Bellotti, V., Synthesis, 1978, vol. 1978, no. 6, p. 443. https://doi.org/10.1055/s-1978-24774

    Article  Google Scholar 

  43. 43

    Giordano, C., Belli, A., and Bellotti, V., Synthesis, 1975, vol. 1975, no. 4, p. 266. https://doi.org/10.1055/s-1975-23728

    Article  Google Scholar 

  44. 44

    Böhme, H., Matusch, R., and Tippmann, E., Arch. Pharm., 1976, vol. 309, no. 9, p. 761. https://doi.org/10.1002/ardp.19763090914

    Article  Google Scholar 

  45. 45

    Plech, T., Wujec, M., Kosikowska, U., Malm, A., Barylka, M., Chalas, A., and Kapron, B., Lett. Drug Design Discovery, 2012, vol. 9, no. 6, p. 633. https://doi.org/10.2174/157018012800673056

    CAS  Article  Google Scholar 

  46. 46

    Mazzone, G., Bonina, F., and Blandino, G., Farmaco, 1981, vol. 36, no. 12, p. 1004

    CAS  Google Scholar 

  47. 47

    Shepard, C.C., Jenner, P.J., Ellard, G.A., and Lancaster, R.D., Int. J. Lepr., 1985, vol. 53, no. 4, p. 587.

    CAS  Google Scholar 

  48. 48

    Chaturvedi, S.C., Bhatia, A., Sharma, A., and Mishra, S.H., Ind. J. Pharm. Sci., 1984, vol. 46, no. 1, p. 10.

    CAS  Google Scholar 

  49. 49

    Wijma, J., Van Daalen, J.J., Daams, J., and Van Deursen, F.W., J. Agric. Food Chem., 1970, vol. 18, no. 4, p. 674. https://doi.org/10.1021/jf60170a013

    CAS  Article  Google Scholar 

  50. 50

    El-Barbary, A.A. and Hammouda, H.A., Arch. Pharm., 1984, vol. 317, no. 6, p. 547. https://doi.org/10.1002/ardp.19843170611

    CAS  Article  Google Scholar 

  51. 51

    Katritzky, A.R., Denisko, O., and Lang, H., Tetrahedron, 1995, vol. 51, no. 32, p. 8703. https://doi.org/10.1016/0040-4020(95)00483-O

    CAS  Article  Google Scholar 

  52. 52

    Katritzky, A.R., Huang, T.B., Voronkov, M.V., Wang, M., and Kolb, H., J. Org. Chem., 2000, vol. 65, no. 25, p. 8819. https://doi.org/10.1021/jo001160w

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Katritzky, A.R., Celik, I., and Abdel-Fattah, A.A.A., Synthesis, 2007, vol. 2007, no. 11, p. 1655. https://doi.org/10.1055/s-2007-966064

    CAS  Article  Google Scholar 

  54. 54

    Katritzky, A.R. and Drewniak, M., Tetrahedron Lett., 1988, vol. 29, no. 15, p. 1755. https://doi.org/10.1016/S0040-4039(00)82034-1

    CAS  Article  Google Scholar 

  55. 55

    Katritzky, A.R., Drewniak, M., and Lue, P., J. Org. Chem., 1988, vol. 53, no. 25, p. 5854. https://doi.org/10.1021/jo00260a011

    CAS  Article  Google Scholar 

  56. 56

    Denisko, O.V., Bischoff, L., Wang, M., Lu, P., and Zakarian, A., in Encyclopedia of Reagents for Organic Synthesis, 2018. https://doi.org/10.1002/047084289X.rn00357.pub3

  57. 57

    Sander, T., OSIRIS Property Explorer, Idorsia Pharmaceuticals Ltd, Switzerland. http://www.organic-chemistry.org/prog/peo/.

  58. 58

    Daina, A., Michielin, O., and Zoete, V., Sci. Reports, 2017, vol. 7, Article no. 42717. https://doi.org/10.1038/srep42717

  59. 59

    Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W., and Tang, Y., J. Chem. Inf. Model., 2012, vol. 52, no. 11, p. 3099-3105. https://doi.org/10.1021/ci300367a

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Molinspiration Property Calculation Service. Molinspiration Cheminformatics, Slovak Republic, 2002. www.molinspiration.com

  61. 61

    Way2Drug, AntiBac-Pred. Avail. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://way2drug.com/antibac/.

  62. 62

    Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V., Druzhilovskii, D.S., Pogodin, P.V., and Poroikov, V.V., Chem. Heterocycl. Compd., 2014, vol. 50, no. 3, p. 444. https://doi.org/10.1007/s10593-014-1496-1

    CAS  Article  Google Scholar 

  63. 63

    PASS Online. Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://www.pharmaexpert.ru/passonline/predict.php.

  64. 64

    Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 1997, vol. 23, nos. 1–3, p. 4. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  Google Scholar 

  65. 65

    Lipinski, C.A., Drug Discov. Today: Technologies, 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 2012, vol. 64, p. 4. https://doi.org/10.1016/j.addr.2012.09.019

    Article  Google Scholar 

  67. 67

    Dotsenko, V.V., Krivokolysko, S.G., Polovinko, V.V., and Litvinov, V.P., Chem. Heterocycl. Compd., 2012, vol. 48, p. 309. https://doi.org/10.1007/s10593-012-0991-5

    CAS  Article  Google Scholar 

  68. 68

    Brunskill, J.S.A., De, A., and Ewing, D.F., J. Chem. Soc. Perkin Trans. 1, 1978, no. 6, p. 629. https://doi.org/10.1039/P19780000629

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Education and Science of Russian Federation (project no. 0795-2020-0031).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dotsenko, V.V., Chigorina, E.A. & Krivokolysko, S.G. N-Hydroxymethylation of 3-Aryl-2-cyanoprop-2-enethioamides. Russ J Gen Chem 90, 1411–1417 (2020). https://doi.org/10.1134/S107036322008006X

Download citation

Keywords:

  • 2-cyanoethanethioamide
  • (E)-3-aryl-2-cyanoprop-2-enethioamides
  • N-hydroxymethylation
  • N-(hydroxymethyl)thioamides
  • Mannich reaction