Skip to main content
Log in

Polymer Matrix Effect on Nonlinear Optical Response of Composite Materials Doped with a Chromophore Containing a Divinylqunoxaline π-Electron Bridge

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of polymer matrices on the nonlinear-optical properties of composite materials with guest chromophores containing a divinylquinoxaline π-electronic bridge has been investigated. Poly(methyl methacrylate) and different methacrylic copolymers as well as epoxy-amine oligomers with azo chromophores in the backbone or as side groups have been used as polymer matrices. The use of a polymer matrix containing carboxylic groups has resulted in significant decrease in the nonlinear-optical coefficient d33 as compared to the case of poly(methyl methacrylate) matrix with a guest chromophore content of 20 wt%. For materials with binary chromophores, d33 values of the studied materials have been higher than for conventional composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Dalton, L.R., Sullivan, P.A., and Bale, D.H., Chem. Rev., 2010, vol. 110, p. 25. https://doi.org/10.1021/cr9000429

    Article  CAS  PubMed  Google Scholar 

  2. Dalton, L.R., Pure. Appl. Chem., 2004, vol. 76, nos. 7–8, p. 1421. https://doi.org/10.1351/pac200476071421

    Article  CAS  Google Scholar 

  3. Dalton, L.R., Harper, A., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind. Eng. Chem. Res., 1999, vol. 38., P.8. https://doi.org/10.1021/ie9705970

  4. Sharipova, S.M. and Kalinin, A.A., Chem. Heterocycl. Compd., 2017, vol. 53, p. 36. https://doi.org/10.1007/s10593-017-2017-9

    Article  CAS  Google Scholar 

  5. Yamada, T., Aoki, I., Miki, H., Yamada, C., and Otomo, A., Mater. Chem. Phys., 2013, vol. 139, p. 699. https://doi.org/10.1016/j.matchemphys.2013.02.020

    Article  CAS  Google Scholar 

  6. Banach, M.J., Alexander, M.D., Caracci, S.Jr., and Vaia, R.A., Chem. Mater., 1999, vol. 11, p. 2554. https://doi.org/10.1021/cm9902725

    Article  CAS  Google Scholar 

  7. Abbotto, A., Beverina, L., Bradamante, S., Facchetti, A., Klein, C., Pagani, G.A., Redi-Abshiro, M., and Wortmann, R., Chem. Eur. J., 2003, vol. 9, p. 1991. https://doi.org/10.1002/chem.200204356

    Article  CAS  PubMed  Google Scholar 

  8. Balakina, M.Yu., ChemPhysChem., 2006, vol. 7, no. 10, p. 2115. https://doi.org/10.1002/cphc.200600263

    Article  CAS  PubMed  Google Scholar 

  9. Makowska-Janusik, M., Kityk, I.V., Kulhánek, J., and Bureš, F., J. Phys. Chem. (A), 2011, vol. 115, no. 44, p. 12251. https://doi.org/10.1021/jp2013539

    Article  CAS  Google Scholar 

  10. Makowska-Janusik, M., and Benard, J.-F., J. Phys., 2007, vol. 79, p. 012030. https://doi.org/10.1088/1742-6596/79/1/012030

    Article  CAS  Google Scholar 

  11. Jespersen, K.G., Pedersen, T.G., and Johansen, P.M., J. Opt. Soc. Am. (B), 2003, vol. 20, no. 10, p. 2179. https://doi.org/10.1364/JOSAB.20.002179

    Article  CAS  Google Scholar 

  12. Pedersen, T.G., Jespersen, K., Johansen, P.M., and Wyller, J., J. Opt. Soc. Am. (B), 2002, vol. 19, no. 11, p. 2622. https://doi.org/10.1364/JOSAB.19.002622

    Article  CAS  Google Scholar 

  13. Burland, D.M., Miller, R.D., and Walsh, C.A., Chem. Rev., 1994, vol. 94, no. 1, p. 31. https://doi.org/10.1021/cr00025a002

    Article  CAS  Google Scholar 

  14. Apitz, D., Svanberg, C., Jespersen, K., Pedersen, T.G., and Johansen, P.M., J. Appl. Phys., 2003, vol. 94, no. 10, p. 6263. https://doi.org/10.1063/1.1621725

    Article  CAS  Google Scholar 

  15. Kalinin, A.A., Sharipova, S.M., Burganov, T.I., Levitskaya, A.I., Fominykh, O.D., Vakhonina, T.A., Ivanova, N.V., Khamatgalimov, A.R., Katsyuba, S.A., and Balakina, M.Yu., J. Photochem. Photobiol. (A), 2019, vol. 370, p. 58. https://doi.org/10.1016/j.jphotochem.2018.10.034

    Article  CAS  Google Scholar 

  16. Vakhonina, T.A., Sharipova, S.M., Ivanova, N.V., Fominykh, O.D., Smirnov, N.N., Yakimansky, A.V., and Balakina, M.Y., Proceedings of SPIE, 2011, vol. 7993, p. 799307. https://doi.org/10.1117/12.880944

    Article  CAS  Google Scholar 

  17. Vakhonina, T.А., Ivanova, N.V., Smirnov, N.N., Yakimansky, A.V., Balakina, M.Yu., and Sinyashin, O.G., Mendeleev Commun., 2014, vol. 24, p. 138. https://doi.org/10.1016/j.mencom.2014.04.002

    Article  CAS  Google Scholar 

  18. Nazmieva, G.N., Vakhonina, T.A., Ivanova, N.V., Mukhtarov, A.Sh., Smirnov, N.N., Yakimansky, A.V., Balakina, M.Yu., and Sinyashin, O.G., Eur. Pol. J., 2015, vol. 63, p. 207. https://doi.org/10.1016/j.eurpolymj.2014.12.003

    Article  CAS  Google Scholar 

  19. Nikonorova, N.A., Balakina, M.Yu., Fominykh, O.D., Pudovkin, M.S., Vakhonina, T.A., Diaz-Calleja, R., and Yakimansky, A.V., Chem. Phys. Lett., 2012, vol. 552, p. 114. https://doi.org/10.1016/j.cplett.2012.09.053

    Article  CAS  Google Scholar 

  20. Nikonorova, N.A., Balakina, M.Yu., Fominykh, O.D., Sharipova, A.V., Vakhonina, T.A., Nazmieva, G.N., Castro, R.A., and Yakimansky, A.V., Mater. Chem. Phys., 2016, vol. 181, p. 217. https://doi.org/10.1016/j.matchemphys.2016.06.052

    Article  CAS  Google Scholar 

  21. Balakina, M.Yu., Fominykh, O.D., Vakhonina, T.A., Smirnov, M.A., and Sharipova, A.V., IEEE Transactions on Dielectrics and Electrical Insulation, 2018, vol. 25, no. 3, p. 778. https://doi.org/10.1109/TDEI.2017.007028

    Article  CAS  Google Scholar 

  22. Vakhonina, T.A., Kadyrova, A.A., Sarvarov, T.M., Smirnov, M.A., Ivanova, N.V., Khamatgalimov, A.R., Balakina, M.Yu., and Sinyashin, O.G., Mendeleev Commun., 2018, vol. 28, p. 272. https://doi.org/10.1016/j.mencom.2018.05.014

    Article  CAS  Google Scholar 

  23. Shulyndin, S.V., Vakhonina, T.A., Ivanova, N.V., Gubanov, E.F., Ustyugov, A.N., Fominykh, O.D., Estrina, G.A., Rozenberg, B.A., and Zuev, M.B., Polym. Sci. (A), 2005, vol. 47, no. 8, p. 808.

    Google Scholar 

Download references

Funding

T. A. Vakhonina, A. A. Kalinin, and A. A. Kadyrova are grateful to the Russian Science Foundation (project no. 16-13-10215) for financial support of the investigation of nonlinear optical activity of composite materials with binary chromophores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vakhonina.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

To the 80th Anniversary of R.A. Cherkasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhonina, T.A., Kalinin, A.A., Ivanova, N.V. et al. Polymer Matrix Effect on Nonlinear Optical Response of Composite Materials Doped with a Chromophore Containing a Divinylqunoxaline π-Electron Bridge. Russ J Gen Chem 90, 448–453 (2020). https://doi.org/10.1134/S1070363220030184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220030184

Keywords:

Navigation