Skip to main content

Structure, Spectral Properties, and Complexing Ability of 1-Phenyl-3-methylpyrazol-5-one Ferrocenoyl Hydrazone

Abstract

A potentially tridentate coordinating chelating ligand system, 1-phenyl-3-methylpyrazol-5-one ferrocenoylhydrazone, has been synthesized. Structure of the obtained ligand and its equilibrium forms in the solution has been elucidated from the data of elemental analysis, IR, electronic absorption and NMR (1H, 13C, and 15N NMR including 1H–1H COSY, 1H–1H NOESY, 1H–13C HSQC, 1H–13C HMBC, and 1H–15N HMBC 2D correlation techniques) spectroscopy as well as quantum chemistry methods. The reactions of 1-phenyl-3-methylpyrazol-5-one ferrocenoylhydrazone with selected transition metal ions have afforded metal chelates, their composition, the mode of coordination, and type of tautomeric form of the coordinated ligand being dependent on the metal nature.

This is a preview of subscription content, access via your institution.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Scheme
Scheme

REFERENCES

  1. Kogan, V.A. and Morozov, A.N., Ferrocene-Based Metallo-chelates. In Electron Structure and High-Temperature Chemistry of Coordination Compounds, Buslaev,Yu., Ed., New York: Nova Science Publishers, Inc., 1996, p. 75.

  2. Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova, Yu.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, p. 64. https://doi.org/10.1070/RC2009v078n07ABEH003890

    CAS  Article  Google Scholar 

  3. Guo, D., Li, Y., Duan, C., Mo, H., and Meng, Q., Inorg. Chem., 2003, vol. 42, no. 8, p. 2153. https://doi.org/10.1021/ic0205132

    CAS  Article  Google Scholar 

  4. Manzur, C., Fuentealba, M., Hamon, J.-R., and Carrillo, D., Coord. Chem. Rev., 2010, vol. 254, p. 765. https://doi.org/10.1016/j.ccr.2009.11.001

    CAS  Article  Google Scholar 

  5. Manzur, C., Zuniga, C., Millan, L., Fuentealba, M., Mata, J.A., Hamon, J.-R., and Carrillo, D., New. J. Chem., 2004, vol. 28, p. 134. https://doi.org/10.1039/B308626G

    CAS  Article  Google Scholar 

  6. Li, M.-X., Yan, L., Wang, J.-P., and Zhou, J., Acta Crystallogr. (E), 2006, vol. 62, p. 2518. https://doi.org/10.1107/S1600536806035665

    CAS  Article  Google Scholar 

  7. Chai, H., Liu, G., Liu, L., and Jia, D., Spectrоchim. Acta (A), 2005, p. 2590. https://doi.org/10.1016/j.saa.2004.09.027

  8. Peng, B.-H., Liu, G.-F., Liu, L., Jia, D.-Z., and Yu, K.-B., J. Photochem. Photobiol., 2005, vol. 171, p. 243. https://doi.org/10.1016/j.jphotochem.2004.10.011

    CAS  Article  Google Scholar 

  9. Peng, B.-H., Liu, G.-F., Liu, L., Jia, D.-Z., and Yu, K.-B., J. Mol. Struct., 2004, vol. 692, p. 217. https://doi.org/10.1016/j.molstruc.2004.02.011

    CAS  Article  Google Scholar 

  10. Wang, J., Liu, L., Liu, G., Zhang, L., and Jia, D., Struct. Chem., 2007, vol. 18, p. 59. https://doi.org/10.1007/s11224-006-9121-2

    CAS  Article  Google Scholar 

  11. Wu, D.-L., Liu, L., Liu, G.-F., and Jia, D.-Z., J. Mol. Struct., 2007, vol. 806, p. 197. https://doi.org/10.1016/j.theochem.2006.11.027

    CAS  Article  Google Scholar 

  12. Zhong, Y., Liu, L., Liu, G., Wu, D., Guo, J., Jia, D., J. Mol. Struct., 2008, vol. 889, p. 259. https://doi.org/10.1016/j.molsctruct.2008.02.021

    CAS  Article  Google Scholar 

  13. Christie, R.M. and Howie, B.D., Dyes Pigm., 2009, vol. 80, no. 2, p. 245. https://doi.org/10.1016/j.dyepig.2008.07.006

    CAS  Article  Google Scholar 

  14. Marchetti, F., Pettinari, C., and Pettinari, R., Coord. Chem. Rev., 2005, vol. 249, p. 2909. https://doi.org/10.1016/j.ccr.2005.03.013

    CAS  Article  Google Scholar 

  15. Tupolova, Yu.P., Shcherbakov, I.N., Tkachev, V.V., Popov, L.D., Levchenkov, S.I., Chetverikova, V.A., Shilov, G.V., and Aldoshin, S.M., Russ. J. Coord. Chem., 2018, vol. 44, no. 2, p. 132. https://doi.org/10.7868/S0132344X18010061

    CAS  Article  Google Scholar 

  16. Popov, L.D., Borodkin, S.A., Tupolova, Yu.P., Kletskii, M.E., Burov, O.N., Vlasenko, V.G., Borlov, A.S., Shcherbakov, I.N.,Zubenko, A.A., and Derkun, A.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 7, p. 1706. https://doi.org/10.1134/S1070363215070233

    CAS  Article  Google Scholar 

  17. Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Minin, V.V., Aleksandrov, G.G., Ugolkova, E.A., Lukov, V.V., and Kogan, V.A., Russ. J. Gen. Chem., 2013, vol. 39, no. 12, p. 849. https://doi.org/10.7868/S0132344X13110078

    CAS  Article  Google Scholar 

  18. Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., Lukov, V.V., Minin, V.V., Starikova, Z.A., Ivannilova, E.V., Tsaturyan, A.A., and Kogan, V.A., Inorg. Chim. Acta, 2013, vol. 405, p. 169. https://doi.org/10.1016/j.ica.2013.05.032

    CAS  Article  Google Scholar 

  19. Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Aleksandrov, G.G., Starikova, Z.A., Lukov, V.V., and Kogan, V.A., J. Struct. Chem., 2015, vol. 56, no. 1, p. 102. https://doi.org/10.1134/S002247661501014X

    CAS  Article  Google Scholar 

  20. Lauher, J.W. and Hoffmann, R., J. Am. Chem. Soc., 1976, vol. 98, no. 7, p. 1729. https://doi.org/10.1021/ja00423a017

    CAS  Article  Google Scholar 

  21. Curphey, T.J., Santer, J.O., Rosenblum, M., and Richards, J.H., J. Am. Chem. Soc., 1960, vol. 82, no. 19, p. 5249. https://doi.org/10.1021/ja01504a062

    CAS  Article  Google Scholar 

  22. Nesmeyanov, A.N., Kursanov, D.N., Setkina, V.N., Kislyakova, N.V., and Kochetkova, N.S., Izv. Akad. Nauk SSSR, Ser. Khim. Nauk., 1962, no. 11, p. 1932.

    Google Scholar 

  23. Cerrichelli, G., Illuminati, G., Ortaggi, G., and Giuliani, A.-M., J. Organomet. Chem., 1977, vol. 127, no. 3, p. 357. https://doi.org/10.1016/S0022-328X(00)98072-0

    Article  Google Scholar 

  24. Pavlik, J. and Subrt, J., Coll. Czech. Chem. Commun., 1967, vol. 32, no. 1, p. 76. https://doi.org/10.1135/cccc19670076

    CAS  Article  Google Scholar 

  25. Floris, B., Illuminati, G., Jones, P.E., and Ortaggi, G., Coord. Chem. Rev., 1972, vol. 8, nos. 1–2, p. 739. https://doi.org/10.1016/S0010-8545(00)80049-1

    Article  Google Scholar 

  26. Haaland, A. and Nillsson, J.E., Acta Chem. Scand., 1968, vol. 22, p. 2653. https://doi.org/10.3891/acta.chem.scand.22-2653

    CAS  Article  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., ontgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford CT, 2004.

  28. Zhurko, G.A., and Zhurko, D.A., Chemcraft ver. 1.6 (build 338). https://www.chemcraftprog.com/.

  29. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. https://doi.org/10.1021/j100096a001

    CAS  Article  Google Scholar 

  30. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. https://doi.org/10.1063/1.464913.

    CAS  Article  Google Scholar 

  31. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    CAS  Article  Google Scholar 

  32. Raspopova, E.A., Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Kogan, V.A., and Levchenkov, S.I., Russ. J. Gen. Chem., 2008, vol. 78, no. 8, p. 1586. https://doi.org/10.1134/S1070363208080215

    CAS  Article  Google Scholar 

  33. La Cour, A. and Hazell, A., Acta Cryst. (Е), 2007, vol. 63, p. 330. https://doi.org/10.1107/S1600536806055887

    CAS  Article  Google Scholar 

Download references

Funding

This study was financially supported by the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. N. Morozov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morozov, А.N., Shcherbakov, I.N., Levchenkov, S.I. et al. Structure, Spectral Properties, and Complexing Ability of 1-Phenyl-3-methylpyrazol-5-one Ferrocenoyl Hydrazone. Russ J Gen Chem 90, 257–267 (2020). https://doi.org/10.1134/S1070363220020152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220020152

Keywords:

  • hydrazone
  • ferrocene
  • pyrazole
  • transition metal complexes
  • tautomerism