Skip to main content
Log in

3,3-Sigmatropic Shifts of Allyl Group Along Cyclopentadiene Ring Perimeter

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Reversible non-degenerate 3,3-sigmatropic shifts of the allyl group along the perimeter of the five-membered ring occurring with energy barriers ΔG° = 28.5–30.2 kcal/mol (o-dichlorobenzene-d4) have been detected in the allyl derivatives of 5-methyl-1,2,3,4-tetramethoxycarbonylcyclopentadiene by NMR method. Using DFT B3LYP/6-311++G(d,p) method, it has been shown that degenerate migrations of the allyl group in the related 5-allyl-1,2,3,4,5-pentamethoxycarbonylcyclopentadiene should occur via 3,3-sigmatropic shift through transition states with conformation of a six-membered ring (chair or boat, with close barriers ΔG° = 27.4 or 27.7 kcal/mol, respectively). The simulated higher barrier of alternative 1,5-sigmatropic shifts of the allyl group (ΔG° = 30.8 kcal/mol) indicates the energy preference of the migrations via 3,3-shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Hiersemann, M. and Jaschinski, T., Comprehensive Chirality, 2012, vol. 2, p. 625. https://doi.org/10.1016/B978-0-08-095167-6.00213-5

    Article  CAS  Google Scholar 

  2. Minkin, V.I., Mikhailov, I.E., Dushenko, G.A., and Zschunke, A., Russ. Chem. Rev., 2003, vol. 72, p. 867. https://doi.org/10.1070/RC2003v072n10ABEH000848

    Article  CAS  Google Scholar 

  3. Gridnev, I.D. and Rosario, M.K.C., Organometallics, 2005, vol. 24, p. 4519. https://doi.org/10.1021/om050039i

    Article  CAS  Google Scholar 

  4. Bulo, R.E., Allaart, F., Ehlers, A.W., de Kanter, F.J.J., Schakel, M., Lutz, M., Spek, A.L., and Lammertsma, K., J. Am. Chem. Soc ., 2006, vol. 128, p. 12169. https://doi.org/10.1021/ja0627895

    Article  CAS  PubMed  Google Scholar 

  5. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Mendeleev Commun., 2015, vol. 25, no. 1, p. 21. https://doi.org/10.1016/j.mencom.2015.01.007

    Article  CAS  Google Scholar 

  6. Bruce, M.I. and White, A.H., Australian J. Chem., 1990, vol. 43, no. 6, p. 949. https://doi.org/10.1071/CH9900949

    Article  CAS  Google Scholar 

  7. Gheewala, C.D., Collins, B.E., and Lambert, T.H., Science, 2016, vol. 351, no. 6276, p. 961. https://doi.org/10.1126/science.aad0591

    Article  CAS  PubMed  Google Scholar 

  8. Gheewala, C.D., Radtke, M.A., Hui, J., Hon, A.B., and Lambert, T.H., Org. Lett., 2017, vol. 19, p. 4227. https://doi.org/10.1021/acs.orglett.7b01867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jayanty, S., Kumar, D.B.K., and Radhakrishnan, T.P., Synth. Met., 2000, vol. 114, p. 37. https://doi.org/10.1016/S0379-6779(00)00204-6

    Article  CAS  Google Scholar 

  10. Qiu, C., Wu, M., and Zhou, Z., Chem. J. Chin. Univ., 1987, vol. 8, no. 8, p. 712.

    CAS  Google Scholar 

  11. Padwa, A. and Blacklock, T.J., J. Am. Chem. Soc., 1978, vol. 100, no. 4, p. 1321. https://doi.org/10.1021/ja00472a064

    Article  CAS  Google Scholar 

  12. Minkin, V.I., Mikhailov, I.E., Dushenko, G.A., Sadekov, I.D., Maksimenko, A.A., and Chernysh, Yu.E., Dokl. Akad. Nauk, 1992, vol. 322, no. 4, p. 706.

    CAS  Google Scholar 

  13. Mikhailov, I.E., Minkin, V.I., Klenkin, A.A., Dushenko, G.A., Kompan, O.E., Struchkov, Yu.T., Yanovskii, A.I., Olekhnovich, L.P., and Borisenko, N.I., Zh. Org. Khim., 1988, vol. 24, no. 11, p. 2301.

    CAS  Google Scholar 

  14. Mikhailov, I.E., Kompan, O.E., Dushenko, G.A., and Minkin, V.I., Mendeleev Commun., 1991, vol. 1, no. 4, p. 121. https://doi.org/10.1070/MC1991v001n04ABEH000074

    Article  Google Scholar 

  15. Mikhailov, I.E., Dushenko, G.A., Kisin, A.V., Mugge, C., Zschunke, A., and Minkin, V.I., Mendeleev Commun., 1994, vol. 4, no. 3, p. 85. https://doi.org/10.1070/MC1994v004n03ABEH000358

    Article  Google Scholar 

  16. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Doklady Chem., 2018, vol. 479, no. 2, p. 53. https://doi.org/10.1134/S0012500818040067

    Article  CAS  Google Scholar 

  17. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minkin, V.I., and Minyaev, R.M., Russ. Chem. Bull., 2015, vol. 64, no. 9, p. 2043. https://doi.org/10.1007/s11172-015-1115-z

    Article  CAS  Google Scholar 

  18. Minkin, V.I., Mikhailov, I.E., and Dushenko, G.A., J. Chem. Soc. Chem. Commun., 1988, no. 17, p. 1181. https://doi.org/10.1039/C39880001181

    Article  Google Scholar 

Download references

Funding

This study was performed in the scope of the project part of the State Task from the Ministry of Education and Science of Russia (project no. 4.844.2017/4.6) and the Program of Fundamental Studies of Presidium of Russian Academy of Sciences no. 14 (“Theoretical and experimental investigation of the chemical bond nature and the mechanism of important chemical reaction and processes, state registration no. АААА-А18-118011290115-6, I.E. Mikhailov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dushenko.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I. et al. 3,3-Sigmatropic Shifts of Allyl Group Along Cyclopentadiene Ring Perimeter. Russ J Gen Chem 90, 161–165 (2020). https://doi.org/10.1134/S1070363220020012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220020012

Keywords:

Navigation