Skip to main content
Log in

Synthesis of Selenium-Containing Humic Nano-Biocomposites from Sodium Bis(2-phenylethyl)phosphinodiselenoate

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New water-soluble selenium-containing nano-biocomposites have been synthesized by oxidation of sodium bis(2-phenylethyl)phosphinodiselenoate with hydrogen peroxide using humic substances to stabilize selenium nanoparticles. As shown by a set of physicochemical methods, the obtained hybrid nanocomposites are formed as spherical hexagonal selenium particles with a size of 13–30 nm, dispersed in a humic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini, S.M. and Mahabadi, V.P., Nanomed. Res. J., 2018, vol. 3, no. 3, p. 117. https://doi.org/10.22034/nmrj.2018.03.001

    CAS  Google Scholar 

  2. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., Zidkova, J., Bjorklund, G., Sochor, J., and Kizek, R., Int. J. Nanomed., 2018, vol. 13, p. 2107. https://doi.org/10.2147/IJN.S157541

    Article  CAS  Google Scholar 

  3. Reich, H.J. and Hondal, R.J., ACS Chem. Biol., 2016, vol. 11, p. 821

    Article  CAS  Google Scholar 

  4. Soumya, M., Shrudhi, D.K.S., Santhiya, R., Rajeshkumar, S., and Venkat, K.S., Colloids Surf., B, 2018, vol. 170, p. 280. https://doi.org/10.1016/j.colsurfb.2018.06.006

    Article  Google Scholar 

  5. Valueva, S.V., Sci. Eur., 2018, vol. 32, no. 1, p. 46.

    Google Scholar 

  6. Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., and Adam, V., Nutrition, 2017, vol. 33, p. 83. https://doi.org/10.1016/j.nut.2016.05.001

    Article  CAS  Google Scholar 

  7. Forootanfar, H., Adeli-Sardou, M., Nikkhoo, M., Mehrabani, M., Amir-Heidari, B., Shahverdi, A.R., and Shakibaie, M., J. Trace Elem. Med. Biol., 2013, vol. 1, p. 1. https://doi.org/10.1016/j.jtemb.2013.07.005

    Google Scholar 

  8. Cremonini, E., Zonaro, E., Donini, M., Lampis, S., Boaretti, M., Dusi, S., Melotti, P., Leo, P., and Vallini, G., Microb. Biotechnol., 2016, vol. 9, p. 758. https://doi.org/10.1111/1751-7915.12374

    Article  CAS  Google Scholar 

  9. Trang, H.D.N., Bongkosh, V., Lin, M., and Azlin, M., Food Control, 2017, vol. 77, p. 17. https://doi.org/10.1016/j.foodcont.2017.01.018

    Article  Google Scholar 

  10. Khurana, A., Tekula, S., Saifi, M.-A., Venkatesh, P., and Godugu, C., Biomed. Pharmacother., 2019, vol. 111, p. 802. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  CAS  Google Scholar 

  11. Ananth, A., Keerthika, V., and Rajan, M.R., Curr. Sci., 2019, vol. 116, no. 2, p. 285. https://doi.org/10.18520/cs/v116/i2/285-290

    Article  CAS  Google Scholar 

  12. Shoeibi, S., Mozdziak, P.E., and Golkar-Narenji, A., Top. Curr. Chem., 2017, vol. 375, p. 1. https://doi.org/10.1007/s41061-017-0176-x

    Article  CAS  Google Scholar 

  13. Khiralla, G.M. and El-Deeb, B.A., LWT Food Sci. Technol., 2015, vol. 63, p. 1001. https://doi.org/10.1016/j.lwt.2015.03.086

    Article  CAS  Google Scholar 

  14. Artem’ev, A.V., Malysheva, S.F., Gusarova, N.K., and Trofimov, B.A., Synthesis, 2010, no. 14, p. 2463. https://doi.org/10.1055/s-0029-1218786

  15. Orlov, D.S., Soros. Obrazovat. Zh., 1997, no. 2, p. 56.

  16. Aleksandrova, G.P., Lesnichaya, M.V., Dolmaa, G., Klimenkov, I.V., Sukhov, B.G., Regdel, D., and Trofimov, B.A., Russ. Chem. Bull., Int. Ed., 2017, vol. 66, no. 1, p. 143. https://doi.org/10.1007/s11172-017-1712-0

    Article  CAS  Google Scholar 

  17. Khutsishvili, S.S., Lesnichaya, M.V., Vakul’skaya, T.I., Dolmaa, G., Aleksandrova, G.P., Rakevich, A.L., and Sukhov, B.G., Spectrosc. Lett., 2018, vol. 51, no. 4, p. 169. https://doi.org/10.1080/00387010.2018.1442356

    Article  CAS  Google Scholar 

  18. Thanh, N.T.K., Maclean, N., and Mahiddine, S., Chem. Rev., 2014, vol. 114, p. 7610. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  19. Fengel, D. and Wegener, G., Wood Chemistry, Ultrastructure, Reactions, Berlin: Walter de Gruyter, 1984.

    Google Scholar 

  20. Singh, B.A., Mishra, S.K., Srivastava, R.K., and Gopal, R., J. Phys. Chem. C, 2010, vol. 114, p. 1774. https://doi.org/10.1021/jp105037w

    Google Scholar 

  21. Artem’ev, A.V., Gusarova, N.K., Malysheva, S.F., Ushakov, I.A., and Trofimov, B.A., Tetrahedron Lett., 2010, vol. 51, no. 16, p. 2141. https://doi.org/10.1016/j.tetlet.2010.02.068

    Article  Google Scholar 

Download references

Funding

This study was performed under partial financial support by the Russian Foundation for Basic Research (project no. 18-316-20017mol_a_ved, synthesis of selenium-containing nanocomposites) in the framework of state assignment for Irkutsk Institute of Chemistry (project nos. AAAA-A19-119022690046-4, AAAA-A16-116112510011-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lesnichaya.

Additional information

Conflict of Interest

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2020, published in Zhurnal Obshchei Khimii, 2020, Vol. 90, No. 1, pp. 157–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnichaya, M.V., Aleksandrova, G.P., Malysheva, S.F. et al. Synthesis of Selenium-Containing Humic Nano-Biocomposites from Sodium Bis(2-phenylethyl)phosphinodiselenoate. Russ J Gen Chem 90, 123–128 (2020). https://doi.org/10.1134/S1070363220010193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220010193

Keywords

Navigation