Skip to main content

Proton Coupled Electron Transfer in the Reaction of Hydroxybenzenes with Hydrazyl Radical in Aqueous Media

Abstract

Possible electron transfer mechanisms have been studied for the reaction of 2,2′-diphenyl-1-picrylhydrazyl with a number of natural hydroxybenzenes in aqueous buffer solutions at pH = 2–9 using the methods of spectrophotometry and quantum chemical calculations. In acidic media, electron transfer occurs from the molecular form of hydroxybenzene to the radical with subsequent loss of proton, whereas in alkaline media the electron is transferred from the phenolate ion to the radical, preceded by the proton elimination step. Realization of a specific mechanism is indicated by the dependence of the reaction rate constant on the pH of the media and by the presence of correlation between the Gibbs free activation energy, calculated using the Marcus equation and that determined experimentally.

This is a preview of subscription content, access via your institution.

References

  1. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., and Russo, N., Annu. Rev. Food Sci. Technol., 2016, vol. 7, p. 335. https://doi.org/10.1146/annurev-food-041715-033206

    CAS  Article  Google Scholar 

  2. Milenković, D., Yorović, J., Jeremić, S., Marković, J.M.D., Avdović, E.H., and Marković, Z., J. Chem., 2017, vol. 2017, p. 1. https://doi.org/10.1155/2017/5936239

    Article  Google Scholar 

  3. Amić, A., Marković, Z., Klein, E., Marković, J.M.D., and Milenković, D., Food Chem., 2017, vol. 246, p. 481. https://doi.org/10.1016/j.foodchem.2017.11.100

    Article  Google Scholar 

  4. Litwinienko, G. and Ingold, K.U., Acc. Chem. Res., 2007, vol. 40, no. 3, p. 222. https://doi.org/10.1021/ar0682029

    CAS  Article  Google Scholar 

  5. Foti, M.C., Daquino, C., Mackie, I.D., DiLabio, G.A., and Ingold, K.U., J. Org. Chem., 2008, vol. 73, p. 9270. https://doi.org/10.1021/jo8016555

    CAS  Article  Google Scholar 

  6. Belaya, N.I., Belyi, A.V., Zarechnaya, O.M., Scherbakov, I.N., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1351. https://doi.org/10.1134/S1070363218070010

    CAS  Article  Google Scholar 

  7. Volkov, V.A. and Misin, V.M., Kinet. Catal., 2015, vol. 56, no. 1, p. 43. https://doi.org/10.1134/S0023158415010139

    CAS  Article  Google Scholar 

  8. Mazzone, G., Russo, N., and Toscano, M., Comput. Theoret. Chem., 2016, vol. 1077, p. 39. https://doi.org/10.1016/j.comptc.2015.10.011

    CAS  Article  Google Scholar 

  9. Musialik, M. and Litwinienko, G., Org. Lett., 2005, vol. 7, no. 22, p. 4951. https://doi.org/10.1021/ol051962j

    CAS  Article  Google Scholar 

  10. Galano, A. and Alvarez-Idaboy, J.R., J. Comput. Chem., 2013, vol. 34, p. 2430. https://doi.org/10.1002/jcc.23409

    CAS  Article  Google Scholar 

  11. Vermerris, W. and, Nicolson, R., Phenolic Compound Biochemistry, Dodrecht: Springer., 2006.

    Google Scholar 

  12. Sukharev, A.G., Timokhov, A.V., and Fedorov, V.V., Kurs metodov optimizatsii (Optimization Methods Course), Moscow: Fizmatlit, 2005.

    Google Scholar 

  13. Belaya, N.I., Belyi, A.V., Zarechnaya, O.M., Shcherbakov, I.N., Pomeshchenko, A.I., and Gorban’, O.A., Kinet. Catal., 2019, vol. 60, no. 1, p. 28. https://doi.org/10.1134/S0023158419010014

    CAS  Article  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannen-berg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision B.01 Gaussian, Inc., Wallingford CT., 2010.

    Google Scholar 

  15. Weinberg, D.R., Gagliardi, C.J., Hull, J.F., Murphy, C.F., Kent, C.A., Westlake, B., Paul, A., Ess, D.H., McCafferty, G.D., and Meyer, T.J., Chem. Rev, 2007, vol. 107, no. 11, p. 5004. https://doi.org/10.1021/cr0500030

    Article  Google Scholar 

  16. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. https://doi.org/10.1021/cr9904009

    CAS  Article  Google Scholar 

  17. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M., J. Am. Chem. Soc., 1992, vol. 114, no. 25, p. 10024. https://doi.org/10.1021/ja00051a040

    CAS  Article  Google Scholar 

  18. Marvin 17.21.0. ChemAxon. https://www.chemaxon.com.

  19. Nelsen, S.F., Weaver, M.N., Luo, Y., J. Phys. Chem. (A), 2006, vol. 110, no. 41, p. 11665. https://doi.org/10.1021/jp064406v

    CAS  Article  Google Scholar 

  20. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, no. 2, p. 679. https://doi.org/10.1063/1.1696792

    CAS  Article  Google Scholar 

  21. Skyner, R.E., McDonagh, J.L., Groom, C.R., van Mourika, T., and Mitchell, J.B.O., Phys. Chem. Chem. Phys, 2015, vol. 17, p. 6174. https://doi.org/10.1039/c5cp00288e

    CAS  Article  Google Scholar 

  22. Ahn, D.-S., Jeon, I.-S., Jang, S.-H., Park, S.-W., Lee, S., and Cheong, W., Bull. Korean Chem. Soc., 2003, vol. 24, no. 6, p. 695. https://doi.org/10.5012/bkcs.2003.24.6.695

    CAS  Article  Google Scholar 

  23. Yamabe, S. and Yamazaki, S., Int. J. Quantum Chem, 2017, vol. 118, no. 6, p. 1. https://doi.org/10.1002/qua.25510

    Google Scholar 

  24. Arunan, E., Desiraju, G.R., Klein, R.A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D.C., Crabtree, R.H., Dannenberg, J.J., Hobza, P., Kjaergaard, H.G., Legon, A.C., Mennucci, B., and Nesbitt, D.J., Pure Appl. Chem., 2011, vol. 83, no. 8, p. 1637. https://doi.org/10.1351/PAC-REC-10-01-02

    CAS  Article  Google Scholar 

  25. Samuilov, A.Ya. and Samuilov, Ya.D., Butlerov. Soobshch, 2011, vol. 28, no. 19, p. 1.

    Google Scholar 

  26. Tentscher, P.R., Seidel, R., Winter, B., Guerard, J.J., and Arey, J.S., J. Phys. Chem. (B), 2015, vol. 119, no. 1, p. 238. https://doi.org/10.1021/jp508053m

    CAS  Article  Google Scholar 

  27. Ghosh, D., Roy, A., Seidel, R., Winter, B., Bradforth, S., and Krylov, A.I., J. Phys. Chem. (B), 2012, vol. 116, no. 24, p. 7269. https://doi.org/10.1021/jp301925k

    CAS  Article  Google Scholar 

  28. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier Science., 2003. 608 p.

    Google Scholar 

  29. Preparativnaya organicheskaya khimiya (Preparative Organic Chemistry), Vulfson, N.S., Ed., Moscow: GKhI, 1959.

    Google Scholar 

  30. Rabinovich, VA. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Bref Chemical Handbook), Leningrad: Khimiya, 1991.

    Google Scholar 

  31. Mendoza-Wilson, A.M., Santacruz-Ortega, H., and Balan-drán-Quintana, R.R., J. Mol. Struct., 2011, vol. 995, p. 134. https://doi.org/10.1016/j.molstruc.2011.04.004

    CAS  Article  Google Scholar 

  32. Petrović, Z.D., Đorović, J., Simijonović, D., Petrović, V.P., and Marković, Z., RSC Adv., 2015, vol. 5, p. 24094. https://doi.org/10.1039/C5RA02134K

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Belaya.

Additional information

Conflict of Interest

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2020, published in Zhurnal Obshchei Khimii, 2020, Vol. 90, No. 1, pp. 31–41.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belaya, N.I., Belyi, A.V., Zarechnaya, O.M. et al. Proton Coupled Electron Transfer in the Reaction of Hydroxybenzenes with Hydrazyl Radical in Aqueous Media. Russ J Gen Chem 90, 23–31 (2020). https://doi.org/10.1134/S1070363220010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220010041

Keywords

  • hydroxybenzene
  • 2,2′-diphenyl-1-picrylhydrazyl
  • electron transfer
  • reorganization energy