Skip to main content
Log in

Metal Sorption by Materials with a Mobile Phase of Extractants

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Data on sorption of rare, noble, radioactive, and nonferrous metals from aqueous solutions by impregnates and TVEXs were analyzed. These are materials combining the properties of sorbents and extractants and differing in the production method. Their distinctive feature is that the extractant is not chemically bonded to the solid support, which is responsible for high kinetic characteristics of sorption processes involving these materials, favorably comparing with conventional sorbents. As a mobile phase to be deposited on the carrier (mainly polymeric) in the case of impregnates or to be introduced during synthesis of TVEXs served organophosphorus extractants, amines, quaternary ammonium bases, etc. Information regarding the effect of various parameters (solution acidity, metal concentration, phase ratio, temperature, and concentration of impurity elements) on separating capability and metal sorption capacity and kinetics was provided for this type of materials. Methods used for stabilizing the properties of impregnates with the view to minimize the extractant loss during application were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referneces

  1. Ionity v khimicheskoi tekhnologii (Ion Exchangers in Chemical Engineering), Nikol’skii, B.P. and Romanov, P.G., Eds., Leningrad: Khimiya, 1982.

  2. Lebedev, K.B., Kazantsev, E.I., Rozmanov, V.M., Pak-holkov, V.S., and Chemezov, V.A., Ionity v tsvetnoi met-allurgii (Ion Exchangers in Nonferrous Metallurgy), Lebedev, K.B., Ed., Moscow: Metallurgiya, 1975.

  3. Ionoobmennye materialy dlya protsessov gidrometallurgii, ochistki stochnykh vod i vodopodgotovki: Spravoch-nik (Ion-Exchange Materials for the Processes of Hydro-metallurgy, Wastewater Treatment, and Water Treatment: Handbook), Laskorin, B.N., Ed., Moscow: Stroiizdat, 1984.

  4. Ionoobmennye materialy dlya protsessov gidrometallurgii, ochistki stochnykh vod i vodopodgotovki: Spravochnik (Ion-Exchange Materials for the Processes of Hydro-metallurgy, Wastewater Treatment, and Water Treatment: Handbook), Laskorin, B.N., Ed., Moscow: Leading Research Inst. of Chemical Technology, 1989.

  5. Mukhin, V.M., Tarasov, A.V., and Klushin, V.N., Aktivnye ugli Rossii (Active Carbons in Russia), Moscow: Metallurgiya, 2000.

    Google Scholar 

  6. Myasoedova, G.V. and Nikashina, V.A., Ross. Khim. Zh., 2006, vol. 50, no. 5, p. 55.

    CAS  Google Scholar 

  7. Kosandrovich, E.G. and Soldatov, V.S., Fibrous Ion Exchangers, in Ion Exchange Technology I: Theory and Materials, Chapter 9, Inamuddin, and M. Luqman, Eds., Dordrecht: Springer Science+Business Media B.V., 2012, p. 299.

  8. Kauckzor, H.W. and Meyer, A., Hydrometallurgy, 1978, no. 3, p. 65.

    Google Scholar 

  9. Meretukov, M.A., Ispol’zovanie impregnirovannykh materialov dlya izvlecheniya i razdeleniya tsvetnykh metallov: Obzornaya informatsiya (Use of Impregnated Materials for Recovery and Separation of Nonferrous Metals: Review), Moscow: TsNIIEITsM, 1980, issue 3.

    Google Scholar 

  10. Warshawsky, A., Ion Exch. Solvent Extr., 1981, vol. 8, part 3, p. 229–310.

    CAS  Google Scholar 

  11. Warshawsky, A. and Cortina, J.L., in Proc. Int. Solvent Extraction Conf. ISEC, Johannesburg, 2002, p. 493.

    Google Scholar 

  12. Zagorodni, A.A., Ion Exchange Materials: Properties and Applications, Chapter 6: Impregnated Resins, Amsterdam: Elsevier, 2007, p. 113.

    Google Scholar 

  13. Kabay, N., Cortina, J.L., Trochimczuk, A., and Streat, M., React. Funct. Polym., 2010, vol. 70, no. 8, p. 484.

    CAS  Google Scholar 

  14. Extraction Chromatography, Braun, T. and Ghersini, G., Eds., Amsterdam: Elsevier Scientific, 1975.

    Google Scholar 

  15. Yagodin, G.A., Savel’eva, V.I., Kireeva, G.N., Pokidysheva (Troshkina), I.D., Korovin, Yu.F., and Kuzovov, Yu.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1984, vol. 27, no. 10, p. 1179.

    CAS  Google Scholar 

  16. Korovin, V.Yu. and Randarevich, S.B., Khim. Tekhnol., 1991, no. 5, p. 3.

    Google Scholar 

  17. Korovin, V., Shestak, Yu., Pogorelov, Yu., and Cortina, J.-L., in Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, Boca Raton: CRC, 2008, p. 261.

    Google Scholar 

  18. Pokidysheva (Troshkina), I.D., Savel’eva, V.I., Kireeva, G.N., Yagodin, G.A., Shvetsov, I.K., and Korovin, Yu.F. Radiokhim., 1986, vol. 28, no. 1, p. 110.

    Google Scholar 

  19. Lee, G.S., Uchikoshi, M., Mimura, K., and Isshiki, M. Sep. Purif. Technol., 2010, vol. 71, no. 2, p. 186. https://doi.org/10.1016/j.seppur.2009.11.020

    CAS  Google Scholar 

  20. Yadav, K.K., Singh, D.K., Anitha, M., Varshney, L., and Singh, H., Sep. Purif. Technol., 2013, vol. 118, p. 350. https://doi.org/10.1016/j.seppur.2013.07.012

    CAS  Google Scholar 

  21. Yadav, K.K., Dasgupta, K., Singh, D.K., Anitha, M., Varshney, L., and Singh, H., Sep. Purif. Technol., 2015, vol. 143, p. 115. https://doi.org/10.1016/j.seppur.2015.01.032

    CAS  Google Scholar 

  22. Yadav, K.K., Dasgupta, K., Singh, D.K., Varshney, L., and Singh, H., J. Chromatogr. A, 2015, vol. 1384, p. 37. https://doi.org/10.1016/j.chroma.2015.01.061

    CAS  PubMed  Google Scholar 

  23. Lee, G.S., Uchikoshi, M., Mimura, K., and Isshiki, M., Sep. Purif. Technol., 2009, vol. 67, no. 1, p. 79. https://doi.org/10.1016/j.seppur.2009.03.033

    CAS  Google Scholar 

  24. Helaly, O.S., Abd El-Ghany, M.S., Moustafa, M.I., Abu-zaid, A.H., Abd El-Monem, N.M., and Ismail, I.M., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, no. 1, p. 206. https://doi.org/10.1016/S1003-6326(11)61162-X

    CAS  Google Scholar 

  25. Shibata, J., Matsumoto, S., and Yamamoto, H., Proc. XXI Int. Mineral Processing Congress: Developments in Mineral Processing, 2000, vol. 13, p. C6–15.

    Google Scholar 

  26. Matsunaga, H., Ismail, A.A., Wakui, Y., and Yokoyama, T., React. Funct. Polym., 2001, vol. 49, no. 3, p. 189. https://doi.org/10.1016/S1381-5148(01)00077-3

    CAS  Google Scholar 

  27. Kamio, E., Fujiwara, Y., Matsumoto, M., Valenzuela, F., and Kondo, K., Chem. Eng. J., 2008, vol. 139, no. 1, p. 93. https://doi.org/10.1016/j.cej.2007.07.072

    CAS  Google Scholar 

  28. Nishihama, S., Kohata, K., and Yoshizuka, K., Sep. Purif. Technol., 2013, vol. 118, p. 511. https://doi.org/1016/j.seppur.2013.07.047

    CAS  Google Scholar 

  29. Naser, A.A, Sharaf Eldeen, G.E.S., Bhran, A. A., Metwally, S.S., and El-Kamash, A.M., J. Ind. Eng. Chem., 2015, vol. 32, p. 264. 10.1016/j.jiec.2015.08.024

    CAS  Google Scholar 

  30. Liao, C.-F., Nie, H.-P., Jiao, Y.-F., and Liang, Y., The Chin. J. Process. Eng., 2006, vol. 6, no. 1, p. 128.

    Google Scholar 

  31. Liao, C., Nie, H., Jiao, Y., Liang, Y., and Yang, S., J. Rare Earths, 2010, vol. 28, p. 120.

    Google Scholar 

  32. Liao, C., Jiao, Y., Liang, Y., Jiang, P., and Nie, H., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 8, p. 1511.

    CAS  Google Scholar 

  33. US Patent 4599153, July 8, 1986.

  34. Serarols, J., Poch, J., and Villaescusa, I., React. Funct. Polym., 2001, vol. 48, nos. 1–3, p. 37.

    CAS  Google Scholar 

  35. Navarro, R., Saucedo, I., Lira, M.A., and Guibal, E., Sep. Sci. Technol., 2010, vol. 45. p. 1950.

    CAS  Google Scholar 

  36. Navarro, R., Saucedo, I., Gonzaleza, G., and Guibalb, E., Chem. Eng. J., 2012, vols. 185–186, p. 226.

    Google Scholar 

  37. Gonzalez, M.P., Saucedo, I., Navarro, R., Avila, M., and Guibal, E., Ind. Eng. Chem. Res., 2001, vol. 40, no. 25, p. 6004.

    Google Scholar 

  38. Serarols, J., Poch, J., and Villaescusa, I., React. Func. Polym., 2001, vol. 48, nos. 1–3, p. 53.

    CAS  Google Scholar 

  39. Benamor, M., Bouariche, Z., Belaid, T., and Draa, M.T., Sep. Pur. Technol., 2008, vol. 59, no. 1, p. 74.

    CAS  Google Scholar 

  40. Huynh, H.T. and Tanaka, M., Ind. Eng. Chem. Res., 2003, vol. 42, no. 17, p. 4050.

    CAS  Google Scholar 

  41. Draa, M.T., Belaid, T., and Benamor, M., Sep. Pur. Tech-nol., 2004, vol. 40, no. 1, p. 77.

    CAS  Google Scholar 

  42. Chen, J.H., Kao, Y.Y., Lin, C.H., and Yang, F.R., Sep. Sci. Technol., 2004, vol. 39, no. 9, p. 2067.

    CAS  Google Scholar 

  43. Chen, J.-H., Chen, W.-R., Gau, Y.-Y., and Lin, G.-H., React. Funct. Polym., 2003, vol. 56, no. 3, p. 175.

    CAS  Google Scholar 

  44. Ciopec, M., Davidescu, C.M., Negrea, A., Grozav, I., Lupa, L., Negrea, P., and Popa, A., Chem. Eng. Res. Des., 2012, vol. 90, no. 10, p. 1660.

    CAS  Google Scholar 

  45. Warshawsky, A., Strikovsky, A.G., Vilensky, M.Y., and Jerabek, K., Sep. Sci. Technol., 2002, vol. 37, no. 11, p. 2607.

    CAS  Google Scholar 

  46. Warshawsky, A., Strikovsky, A.G., Fernandez, F.M., and Jerabek, K., Sep. Sci. Technol., 2002, vol. 37, no. 4, p. 823.

    Google Scholar 

  47. Muraviev, D., Oleinikova, M., and Valiente, M., Lang-muir, 1997, vol. 13, no. 18, p. 4915.

    CAS  Google Scholar 

  48. Mendoza, R.N., Medina, T.I.S., Vera, A., Rodriguez, M.A., and Guibal, E., Solvent Extr. Ion Exch., 2000, vol. 18, no. 2, p. 319.

    CAS  Google Scholar 

  49. Gonzalez, M.P., Saucedo, I., Navarro, R., Avila, M., and Guibal, E., Ind. Eng. Chem. Res., 2001, vol. 40, no. 25, p. 6004.

    Google Scholar 

  50. Tanaka, M., Huynh, H.T., and Kobayashi, M., Proc. TMS Annual Meeting, 2003, p. 485.

    Google Scholar 

  51. Luo, F. and Li, D., J. Rare Earths, 2005, vol. 23 (Suppl. 2), p. 31.

    Google Scholar 

  52. Shiau, C.Y., Lin, C.L., and Chang, H.S., Ind. Eng. Chem. Res., 2005, vol. 44, no. 13, p. 47717.

    Google Scholar 

  53. Vaughan, J., Dieters, C., Fu, W., and Byrne, K., Miner. Eng., 2016, vol. 88, p. 2.

    CAS  Google Scholar 

  54. Bari, M. F., Hossain, M. S., Mujtab, I.M., Jamaluddin, S.B., and Hussin, K., Hydrometallurgy, 2009, vol. 95, nos. 3–4, p. 308.

    CAS  Google Scholar 

  55. Liu, J., Gao, X., Liu, C., Guo, L., Zhang, S., Liu, X., Li, H., Liu, C., and Jin, R., Hydrometallurgy, 2013, vol. 137, p. 140.

    CAS  Google Scholar 

  56. Navarro, R., Gallardo, V., Saucedo, I., and Guibal, E., Hydrometallurgy, 2009, vol. 98, nos. 3–4, p. 257.

    CAS  Google Scholar 

  57. El-Sofany, E.A., Zaher, W.F., and Aly, H.F., J. Hazard. Mater., 2009, vol. 165, nos. 1–3, p. 623.

    CAS  PubMed  Google Scholar 

  58. Zhang, A., Hu, Q., Wang, W., and Kuraoka, E., Ind. Eng. Chem. Res., 2008, vol. 47, no. 16, p. 6158.

    CAS  Google Scholar 

  59. Arias, A., Saucedo, I., Navarro, R., Gallardo, V., Martinez, M., and Guibal, E., React. Funct. Polym., 2011, vol. 71, no. 11, p. 1059.

    CAS  Google Scholar 

  60. Nguyen, N.V., Lee, J.-C., Jeong, J., and Pandey, B.D., Chem. Eng. J., 2013, vol. 219, p. 174.

    Google Scholar 

  61. Liu, J., Chen, H., Hu, Y., Guo, Z., Liu, C., and Qu, R., J. Rare Earths, 2005, vol. 23 (Suppl. 2), p. 69.

    CAS  Google Scholar 

  62. Liu, J.S., Chen, H., Guo, Z.L., and Hu, Y.C., J. Appl. Polym. Sci., 2006, vol. 100, no. 1, p. 253.

    Google Scholar 

  63. Yuan, Y., Liu, J., Zhou, B., Yao, S., Li, H., and Xu, W., Hydrometallurgy, 2010, vol. 101, nos. 3–4, p. 148.

    CAS  Google Scholar 

  64. Karve, M. and Rajgor, R.V., Desalination, 2008, vol. 232, nos. 1–3, p. 191.

    CAS  Google Scholar 

  65. Pathak, S.K., Tripathi, S.C., Singh, K.K., Mahtele, A.K., Kumar, M., and Gandhi, P.M., J. Hazard. Mater., 2014, vol. 278, p. 464–473.

    CAS  PubMed  Google Scholar 

  66. Zhang, A., Xiao, C., Kuraoka, E., and Kumagai, M., J. Hazard. Mater., 2007, vol. 147, nos. 1–2, p. 601.

    CAS  PubMed  Google Scholar 

  67. Palant, A.A., Troshkina, I.D., Chekmarev, A.M., and Ko-stylev, A.I., Tekhnologiya reniya (Rhenium Technology), Moscow: Galleya-Print, 2015.

    Google Scholar 

  68. Blokhin, A.A., Kopyrin, A.A., Mikhailenko, M.A., and Nikitin, N.V., Materialy II Mezhdunarodnoi konferentsii “Metallurgiya tsvetnykh i redkikh metallov” (Proc. II Int. Conf. “Metallurgy of Nonferrous and Rare Metals”), Krasnoyarsk, 2003, vol. 1, p. 95.

    Google Scholar 

  69. Meshcheryakov, N.M., Kuznetsov, V.A., Lomonosov, A.V., Nikitin, N.V., and Mikhailenko, M.A., Abstracts of Papers, XIII Rossiiskaya konferentsiya po ekstraktsii (XIII Russian Conf. on Extraction), Moscow, 2004, part 2, p. 208.

    Google Scholar 

  70. Troshkina, I.D., Serbin, A.M., Khaing Zo Naing, Abdusa-lomov, A.A., Ushanova, O.N., and Demin, Yu.V., Sorbts. Khromatogr. Prots., 2006, vol. 6, no. 6, part 2, p. 1022.

    Google Scholar 

  71. Turanov, A.N., Karandashev, V.K., Reznik, A.M., and Evseeva, N.K., Khim. Tekhnol., 2002, no. 7, p. 24.

    Google Scholar 

  72. Kabay, N., Arda, M., Saha, B., and Streat, M., React. Funct. Polym., 2003, vol. 54, nos. 1–3, p. 103.

    CAS  Google Scholar 

  73. Saha, B., Gill, R.J., Bailey, D.G., Kabay, N., and Arda, M., React. Funct. Polym., 2004, vol. 60, nos. 1–3, p. 223.

    CAS  Google Scholar 

  74. Hosseini, M.S., Hosseini-Bandegharaei, A., and Hos-seini, M., Int. J. Environ. Anal. Chem., 2009, vol. 89, no. 1, p. 35.

    CAS  Google Scholar 

  75. Dietz, M.L., Yaeger, J., Jr., Sajdak, L.R., Jr., and Jensen, M.P., Sep. Sci. Technol., 2005, vol. 40, nos. 1–3, p. 349.

    CAS  Google Scholar 

  76. El-Dessouky, S.I. and Borai, E.H., J. Radioanal. Nucl. Chem., 2006, vol. 268, no. 2, p. 247.

    CAS  Google Scholar 

  77. Hoshi, H., Wei, Y.Z., Kumagai, M., Asakura, T., and Mori-ta, Y., J. Alloys Compd., 2006, vols. 408–412, p. 1274.

    Google Scholar 

  78. Zhang, A., Wang, W., Chai, Z., and Kuraoka, E., Eur. Polym. J., 2008, vol. 44, no. 11, p. 3899.

    CAS  Google Scholar 

  79. Zhang, A., Hu, Q., Wang, W., and Kuraoka, E., Ind. Eng. Chem. Res., 2008, vol. 47, no. 16, p. 6158.

    CAS  Google Scholar 

  80. Korovin, V. and Pogorelov, Yu., Scandium: Compounds, Productions, and Applications, New York: Nova Science, 2011, p. 77.

    Google Scholar 

  81. Korovin, V. and Shestak, Yu., Hydrometallurgy, 2009, vol. 95, p. 346.

    CAS  Google Scholar 

  82. Korovin, V., Shestak, Y., and Cortina, J.L., Proc. Int. Solvent Extraction Conf. ISEC 2002, Sole, K., Cole, P., and Preston, J., Eds., Cape Town: Chris van Rensburg, Johannesburg, 2002, p. 377.

  83. Yoshizuka, K., Sakamoto, Y., Baba, Y., and Inoue, K., Hydrometallurgy, 1990, vol. 23, p. 309.

    CAS  Google Scholar 

  84. Muraviev, D., Solvent Extr. Ion Exch., 1998, vol. 16, p. 381.

    CAS  Google Scholar 

  85. Trochimczuk, A.W., Kabay, N., Arda, M., and Streat, M., React. Funct. Polym., 2004, vol. 59, no. 1, p. 1

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation under Agreement on subsidies no. 14.580.21.0004 of 19.08. 2015 (project identification no. RFMEFI58015X0004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. D. Troshkina, Ya. A. Obruchnikova or S. M. Pestov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2017, published in Rossiiskii Khimicheskii Zhurnal, 2017, Vol. 61, No. 4, pp. 54–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshkina, I.D., Obruchnikova, Y.A. & Pestov, S.M. Metal Sorption by Materials with a Mobile Phase of Extractants. Russ J Gen Chem 89, 2721–2732 (2019). https://doi.org/10.1134/S107036321912048X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321912048X

Keywords

Navigation