Skip to main content
Log in

Еxcitation Energy Relaxation Processes Involving Chlorophyll Molecules In Vitro: Solutions and Self-Organized Nanoassemblies

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review presents the main results obtained by the Belorussian scientific school of Acad. G.P. Gurinovich and his followers in the in the research on the spectral kinetic properties and photonics of pigment-pigment interactions of chlorophyll and its close analogs in vitro (from highly concentrated solutions to structurally organized heterogeneous nanoassemblies of various morphology), as well as on the interactions of multiporphyrin nanoassemblies with molecular oxygen. The adequacy of various theoretical models that describe the primary processes of photosynthesis (electronic excitation energy transfer and photoinduced charge transport) at short interchromophore distances, considering the properties of the medium and the conformational dynamics of interacting subunits, is substantiated. Application-oriented aspects concerning the use of multicomponent nanostructures on the basis of photostable tetrapyrrole compounds with controllable electron-transport properties and conformational mobility for the development of element base in molecular electronics, photonics, medicine, and nanobiotechnology are considered in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battersby, A.R., Nat. Prod. Rep., 2000, vol. 17, p. 507.

    CAS  PubMed  Google Scholar 

  2. Kundu, S. and Patra, A., Chem. Rev., 2017, vol. 117, no. 2, p. 712.

    CAS  PubMed  Google Scholar 

  3. Taniguchi, M. and Lindsey, J.S., Chem. Rev., 2017, vol. 117, p. 344.

    CAS  PubMed  Google Scholar 

  4. Lee, S.-H., Blake, I.M., Larsen, A.G., McDonald, J.A., Ohkubo, K., Fukuzumi, S., Reimers, J.R., and Crossley, M.J., Chem. Sci., 2016, vol. 7, p. 6534.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wibmer, L., Lourenco, L.M.O., Roth, A., Katsukis, G., Neves, M.G.P., Cavaleiro, J.A.S., Tomé, J.P.C., Torres, T., and Guldi, D.M., Nanoscale, 2015, vol. 7, p. 5674.

    CAS  PubMed  Google Scholar 

  6. Multiporphyrin Arrays: Fundamentals and Applications, Kim, D., Ed., Singapore: Pan Stanford, 2012.

    Google Scholar 

  7. Zenkevich, E.I. and von Borczyskowski, C., Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Volume 22: Biophysical and Physicochemical Studies of Tetrapyrroles, Kadish, K., K.M. Smith, K.M., and Guilard, R., Eds., Singapore: World Scientific, 2012, vol. 4, chapter 104, p. 68.

    Google Scholar 

  8. Godnev, T.N., Khlorofill. Ego stroeniye i obrazovanie v rastenii (Chlorophyll. Its structure and formation in a plant), Minsk: Nauka i Tekhnika, 1963.

    Google Scholar 

  9. Khlorofill (Chlorophyll), Shlyk, A.A., Ed., Minsk: Nauka i Tekhnika, 1974.

    Google Scholar 

  10. Fotobiologiya i membrannaya biofizika (Photobiology and Membrane Biophysics), Volotovskii, I.D., Ed., Minsk: Tekhnoprint, 1999.

    Google Scholar 

  11. Gurinovich, G.P., Sevchenko, A.N., and Solov’ev, K.N., Spektroskopiya khlorofilla i rodstvennykh soyedinenii (Spectroscopy of Chlorophyll and Related Compounds), Minsk: Nauka i Tekhnika, 1968.

    Google Scholar 

  12. Solov’yev K.N., Gladkov L.L., Starukhin A.S., and Shkirman S.F., Spektroskopiya porfirinov: Kolebatel’nyye sostoyaniya, Minsk: Nauka i Tekhnika, 1985.

    Google Scholar 

  13. Gurinovich, G.P. and Shul’ga A.M., Biofizika, 1968, vol. 13, no. 1, p. 42.

    PubMed  Google Scholar 

  14. Gurinovich, G.P., Suboch, V.P., Losev, A.P., and Sevchenko, A.N., Dokl. Akad. Nauk SSSR, 1970, vol. 194, no. 3, p. 723.

    PubMed  Google Scholar 

  15. Gurinovich, G.P., Dzhagarov, B.M., and Sagun, E.I., Zh. Prikl. Spektrosk., 1971, vol. 15, no. 3, p. 476

    Google Scholar 

  16. Zen’kevich, E.I., Losev, A.P., and Gurinovich, G.P., Migratsiya energii mezhdu pigmentami fotosinteticheskogo apparata rastenii (Migration of Energy between the Pigments of the Photosynthetic Apparatus of Plants), Preprint of Inst. of Physics, Acad. Sci. BSSR, Minsk, 1971, p. 1.

    Google Scholar 

  17. Gurinovich, G.P., Gurinovich, I.F., Ksenofontova, N.M., and Terekhov, S.N., Zh. Prikl. Spektrosk., 1985, vol. 43, no. 1, p. 75.

    CAS  Google Scholar 

  18. Sagun, E.I., Losev, A.P., and Kochubeeva, N.D., Zh. Prikl. Spektrosk., 1985, vol. 42, no. 5, p. 719.

    Google Scholar 

  19. Gurinovich, G.P., Dzhagarov, B.M., Sagun, E.I., and Bondarev, S.L., Biofizika, 1977, vol. 22, no. 4, p. 565.

    PubMed  Google Scholar 

  20. Gurinovich, G.P., Dzhagarov, B.M., Timinskii, Yu.V., and Chirvonyi, V.S., Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 3, p. 728.

    Google Scholar 

  21. Byteva, I.M. and Gurinovich, G.P., J. Luminesc., 1979, vol. 21, p. 17.

    CAS  Google Scholar 

  22. Blankenship, R.E., Molecular Mechanisms of Photosynthesis, Oxford: Wiley–Blackwell, 2002.

    Google Scholar 

  23. Parson, W.W. and Warshel, A., The Purple Prototropic Bacteria, Hunter, C.N., Daldal, F., Thurnauer, M.C., and Beatty, J.T., Eds., Dordrecht: Springer, 2009, p. 355.

  24. Gall, A., Sogalia, E., Gulbinas, V., Ilioaia, O., Robert, B., and Valkunas, L., Biochim. Biophys. Acta, 2010, vol. 1797, p. 1465.

    CAS  PubMed  Google Scholar 

  25. Valkunas, L., Trinkunas, G., Chmeliov, J., and Ruban, A.V., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 7576.

    CAS  PubMed  Google Scholar 

  26. Freiberg, A. and Trinkunas, G., Unraveling the Hidden Nature of Antenna Excitations, Laisk, A., Nedbal, L., and Govindjee, Amsterdam: Springer Science + Business Media B.V., 2009, p. 55.

  27. Unterkofler, S., Pflock, T., Southall, J., Cogdell, R.J., and Koehler, J., Chem. Phys. Chem., 2011, vol. 12, p. 711.

    CAS  PubMed  Google Scholar 

  28. Krüger, T.P.J., Ilioaia, C., Valkunas, L., and van Grondelle, R., J. Phys. Chem. B, 2011, vol. 115, p. 5083.

    PubMed  Google Scholar 

  29. Yoneda, Y., Katayama, T., Nagasawa, Y., Miyasaka, H., and Umena, Y., J. Am. Chem. So.., 2016, vol. 138, no. 36, p. 11203.

    Google Scholar 

  30. Ivashin, N.V. and Shchupak, E.E., Opt. Spectrosk., 2016, vol. 121, no. 2, p. 181.

    CAS  Google Scholar 

  31. Cheng, Y.C. and Fleming, G.R., Ann. Rev. Phys. Chem., 2009, vol. 60, p. 241.

    CAS  Google Scholar 

  32. van Grondelle, R. and Novoderezhkin, V.I., The Purple Phototropic Bacteria, Hunter, C.N., Daldal, F., Thurnauer, M.C., and Beatty, J.T., Eds., Dordrecht: Springer, 2009, p. 55.

  33. Jordanides, X.J., Scholes, G.D., and Fleming, G.R., J. Phys. Chem. B, 2001, vol. 105, p. 1652.

    CAS  Google Scholar 

  34. Johnson, M.P, Pérez-Bueno, M.L, Zia, A., Horton, P., and Ruban, A.V., Plant Physiol., 2009, vol. 149, no. 2, p. 1061.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dall’Osto, L., Cazzaniga, S., Bressan, M., Paleček, D., Židek, K., Niyogi, K.K., Fleming, G.R., Zigmantas, D., and Bassi, R., Nat. Plants, 201, vol. 73, p. 17033. {rshttps://doi.org/10.1038/nplants.2017.33.url}

  36. Bixon, M., Jortner, J., and Michel-Beyerle, M.E., Chem. Phys., 1995, vol. 97, p. 389.

    Google Scholar 

  37. Davis, W.B., Ratner, M.A., and Wasielewski, M.R., J. Am. Chem. Soc., 2001, vol. 123, no. 32, p. 7877.

    CAS  PubMed  Google Scholar 

  38. Kilin, D., Kleinekathofer, U., Schreiber, M., J. Phys. Chem. A, 2000, vol. 104, p. 5413.

    CAS  Google Scholar 

  39. Dorfman, K.E, Zhang, Y, and Mukamel, S., Proc. Natl. Acad. Sci. USA, 2016, vol. 113, no. 36, p. 10001.

    CAS  PubMed  Google Scholar 

  40. Kelly, A.R. and Porter, G., Proc. Roy. Soc., 1970, vol. 315, no. 1, p. 149.

    CAS  Google Scholar 

  41. Kelly, A.R. and Patterson, L.K., Proc. Roy. Soc., 1971, vol. A324, no. 1, p. 117.

    Google Scholar 

  42. Beddard, G.S. and Porter, G., Nature, 1976, vol. 260, no. 5549, p. 366.

    CAS  Google Scholar 

  43. Trosper, T., Park, R.B., and Sauer, K., Photochem. Photobiol., 1968, vol. 7, no. 3, p. 451.

    CAS  PubMed  Google Scholar 

  44. Godik, V., Urbanova, M., Borisov, A.Yu., and Vacek, K., Studia Biophys., 1981, vol. 82, p. 179.

    CAS  Google Scholar 

  45. Losev, A.P. and Zen’kevich, E.I., Zh. Prikl. Spektrosk., 1968, vol. 9, no. 1, p. 144.

    CAS  Google Scholar 

  46. Losev, A.P., Zen’kevich, E.I., and Sagun, E.I., Zh. Prikl. Spektrosk., 1977, vol. 27, no. 2, p. 244.

    CAS  Google Scholar 

  47. Gurinovich, G.P., Losev, A.P., and Zenkevich, E.I., Spectrosc. Lett., 1978, vol. 11, no. 7, p. 493.

    Google Scholar 

  48. Zen’kevich, E.I., Sagun, E.I., Losev, A.P., and Gurinovich, G.P., Opt. Spektrosk., 1980, vol. 49, no. 5, p. 896.

    Google Scholar 

  49. Sagun, E.I., Gurinovich, G.P., Losev, A.P., and Zen’kevich, E.I., Izv. Akad. Nauk Estonii, Ser. Fiz.-Mat.Nauk, 1982, vol. 32, no. 2, p. 170.

    Google Scholar 

  50. Zen’kevich, E.I., Sagun, E.I., Losev, A.P., and Gurinovich, G.P., Zh. Prikl. Spektrosk., 1980, vol. 32, no. 6, p. 1047.

    Google Scholar 

  51. Foerster, T., Modern Quantum Chemistry, Sinanoglu, O., Ed., New York: Academic, 1965, vol. 3, p. 93.

    Google Scholar 

  52. Ermolaev, V.L., Bodunov E.N., Sveshnikova, E.B., and Shakhverdov, T.A., Bezyzluchatel’niy perenos energii elektronnogo vozbuzhdeniya (Non-Radiative Energy Transfer of Electronic Excitation), Leningrad: Nauka, 1977.

    Google Scholar 

  53. Agranovich, V.M. and Galanin, M.D., Perenos energii elektronnogo vozbuzhdeniya v kondensirovannykh sredakh (Energy transfer of Electronic Excitation in Condensed Media), Moscow: Nauka, 1978.

    Google Scholar 

  54. Zenkevich, E.I., Progress and Trends in Applied Spectroscopy, Fassler, D., Feller, K.-H., and Wilgelmi, B., Eds., Teubner-Texte zur Physik, Leipzig: BSB B.G. Teubner, 1987, vol. 4, p. 270.

    Google Scholar 

  55. Rubinov, A.N., Zenkevich, E.I., Nemkovich, N.A., and Tomin, V.I., J. Luminesc., 1982, vol. 26, no. 4, p. 367–376.

    CAS  Google Scholar 

  56. Bakhshiev, N.G., Spektroskopiya mezhmolekulyarnykh vzaimodeistvii (Spectroscopy of Intermolecular Interactions), Leningrad: Nauka, 1973.

    Google Scholar 

  57. Zen’kevich, E.I., Doctoral (Fiz.-Mat.) Dissertation, Minsk, 1990.

    Google Scholar 

  58. Bojarski, C. and Kawski, A., Ann der Physik, 1959, vol. 5, nos. 1–2, p. 31.

    CAS  Google Scholar 

  59. Bojarski, C., Kusba, J., and Obermuller, G., Acta Phys. Pol., 1975, vol. A48, no. 1, p. 85.

    CAS  Google Scholar 

  60. Bodunov, E.N., Malyshev, V.A., and Shakhverdov, T.A., Opt. Spektrosk., 1986, vol. 60, no. 1, p. 86.

    CAS  Google Scholar 

  61. Ore, A., J. Chem. Phys., 1959, vol. 31, no. 2, p. 442.

    CAS  Google Scholar 

  62. Craver, F.W. and Knox, R.S., Mol. Phys., 1971, vol. 22, no. 3, p. 385.

    CAS  Google Scholar 

  63. Bodunov, E.N., Zh. Prikl. Spektrosk., 1977, vol. 26, no. 6, p. 1123.

    CAS  Google Scholar 

  64. Bodunov, E.N., Opt. Spektrosk., 1981, vol. 50, no. 5, p. 1007.

    CAS  Google Scholar 

  65. Zen’kevich, E.I. and Losev, A.P., Izv. Akad. Nauk SSSR, Ser. Fiz., 1975, vol. 39, no. 9, p. 1845.

    Google Scholar 

  66. Levshin, V.L. and Grineva, Yu.I., Zh. Prikl. Spektrosk., 1968, vol. 9, no. 4, p. 631.

    Google Scholar 

  67. Gurinovich, G.P., Zen’kevich, E.I., Losev, A.P., and Sagun, E.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1983, vol. 47, no. 7, p. 1410.

    CAS  Google Scholar 

  68. Bay, Z. and Pearlstein, R.M., Proc. Natl. Acad. Sci. USA, 1963, vol. 50, no. 6, p. 1071.

    CAS  PubMed  Google Scholar 

  69. Genri, B. and Kasha, M., Usp. Fiz. Nauk, 1972, vol. 108, no. 1, p. 113.

    Google Scholar 

  70. Losev, A.P., Zen’kevich, E.I., and Sagun, E.I., Zh. Prikl. Spektrosk., 1977, vol. 27, no. 2, p. 244.

    CAS  Google Scholar 

  71. Zen’kevich, E.I., Sagun, E.I., Losev, A.P., and Gurinovich, G.P., Opt. Spektrosk., 1980, vol. 49, no. 5, p. 896.

    Google Scholar 

  72. Gulis, I.M. and Komyak, A.I., Zh. Prikl. Spektrosk., 1980, vol. 32, no. 5, p. 897.

    CAS  Google Scholar 

  73. Bodunov, E.N., Malyshev, V.A., and Yakovlev, S.V., Opt. Spektrosk., 1980, vol. 48, no. 5, p. 903.

    CAS  Google Scholar 

  74. Losev, A.P., Zen’kevich, E.I., and Sagun, E.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1980, vol. 44, no. 4, p. 783.

    CAS  Google Scholar 

  75. Breton, J. and Geacintov, N.E., Biochim. Biophys. Acta, 1980, vol. 594, no. 1, p. 1.

    CAS  PubMed  Google Scholar 

  76. Gruber, J.M., Chmeliov, J., Krüger, T.P.J., Valkunas, L., and van Grondelle, R., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 19844.

    PubMed  Google Scholar 

  77. Gurinovich, G.P., Zen’kevich, E.I., and Sagun, E.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1980, vol. 44, no. 4, p. 693.

    CAS  Google Scholar 

  78. Gurinovich, G.P., Zenkevich, E.I., and Sagun, E.I., J. Luminesc., 1982, vol. 26, no. 3, p. 297.

    CAS  Google Scholar 

  79. Lehn, J.-M., Angew. Chem., Int. Ed. Engl., 1990, vol. 29, p. 1304.

    Google Scholar 

  80. Sakurai, T., Tashiro, K., Honsho, Y., Saeki, A., Seki, S., Osuka, A., Muranaka, A., Uchiyama, M., Kim, J., Ha, S., Kato, K., Takata, M., and Aida, T., J. Am. Chem. Soc., 2011, vol. 133, p. 6537.

    CAS  PubMed  Google Scholar 

  81. Colvin, M.T., Ricks, A.B., Scott, A.M., Smeigh, A.L., Carmieli, R., Miura, T., and Wasielewski, M.R., J. Am. Chem. Soc., 2011, vol. 133, p. 1240.

    CAS  PubMed  Google Scholar 

  82. Zenkevich, E.I. and von Borczyskowski, C., Handbook of Polyelectrolytes and Their Applications, Tripathy, S.K., Kumar, J., and Nalwa, H.S., Eds., San Diego: American Scientific Publishers, 2002, vol. 2, chapter 11, p. 301.

    Google Scholar 

  83. Sheinin, V.B., Bobritskaya, E.V., Shabunin, S.A., and Koifman, O.I., Macroheterocycles, 2014, vol. 7, no. 3, p. 209.

    CAS  Google Scholar 

  84. Nozawa, R., Tanaka, H., Cha, W.-Y., Hong, Y., Hisaki, I., Shimizu, S., Shin, J.-Y., Kowalczyk, T., Irle, S., Kim, D., and Shinokubo, H., Nat. Commun., 2017, vol. 7, p. 13620. https://doi.org/10.1038/ncomms13620.

    Google Scholar 

  85. Frigerio, C., Santos, J.P.G., Quaresma, P., Rebelo, S.L.H., Gomes, A., Eaton, P., Pereira, E., Carvalho, P.A., Shelnutt, J.A., Jiang, L., Wang, H., and Medforth, C.J., Tetrahedron, 2016, vol. 72, p. 6988.

    CAS  Google Scholar 

  86. Pahk, I., Kodis, G., Fleming, G.R., Moore, T.A., Moore, A.L., and Gust, D., J. Phys. Chem. B, 2016, vol. 120, no. 40, p. 10553.

    CAS  PubMed  Google Scholar 

  87. Schwarz, F. P., Gouterman, M., Muljiami, Z., and Dolphin, D., Bioinorg. Chem., 1972, vol. 2, no. 2, p. 1.

    Google Scholar 

  88. Bogatskii, A.V. and Zhilina, Z.I., Russ. Chem. Rev., 1982, vol. 51, p. 592.

    Google Scholar 

  89. Zen’kevich, E.I., Shul’ga, A.M., Sagun, E.I., and Gurinovich, G.P., Materialy Vsesoyuzn. s″yezda po spektroskopii, chast’ III “Spektroskopiya slozhnykh molekul” (Proc. All-Union Congress on Spectroscopy, Part 3 “Spectroscopy of Complex Molecules”), Tomsk, 1983, p. 102.

    Google Scholar 

  90. Gurinovich, G.P., Zen’kevich, E.I., Sagun, E.I., and Shul’ga, A.M., Opt. Spektrosk., 1984, vol. 56, no. 6, p. 1037.

    CAS  Google Scholar 

  91. Zenkevich, E.I., Shulga, A.M., Chernook, A.V., and Gurinovich, G.P., Chem. Phys. Lett., 1984, vol. 109, no. 3, p. 306.

    Google Scholar 

  92. Zenkevich, E.I., Shulga, A.M., Sagun, E.I., and Gurinovich, G.P., Teubner-Texte zur Physik, Leipzig. BSB B.G. Teubner, 1985, vol. 4, p. 297.

    Google Scholar 

  93. Zenkevich E.I., Shulga A.M., Chernook A.V., Gurinovich, G.P., and Sagun, E.I., Light in Biology and Medicine, Douglas, R.H., Moan, J., and Ronto, G., New York: Plenum, 1991, vol. 2, p. 337.

    Google Scholar 

  94. Zen’kevich, E.I., Chernook, A.V., Shul’ga, A.M., Gurinovich, G.P., Sagun, E.I., Starukhin, A.S., and Pershukevich, P.P., Izv. Akad. Nauk Estonii, Ser. Fiz.-Mat. Nauk, 1991, vol. 40, no. 3, p. 205.

    Google Scholar 

  95. Zenkevich, E.I., Shulga, A.M., Chernook, A.V., Sagun, E.I., and Gurinovich, G.P., Proc. Indian Acad. Sci., Chem. Sci., 1995, vol. 107, no. 6, p. 795.

    CAS  Google Scholar 

  96. Zen’kevich, E.I., Shul’ga, A.M., Sagun, E.I., von Borczyskowski, C., Rempel, U., and Chernook, A.V, Uspekhi khimii porfirinov (Advances in Porphyrin Chemistry), Golubchikov, O.A., Ed., St. Petersburg: Sankt-Peterb. Univ., 1997, vol. 2, chapter 12, p. 270.

    Google Scholar 

  97. Zenkevich, E.I., Knyukshto, V.N., Shulga, A.M., Kuzmitzkii, V.A., Gael, V.I., Levinson, E.G., and Mironov, A.F., J. Luminesc., 1997, vol. 75, no. 3. p. 229.

    Google Scholar 

  98. Zenkevich, E.I., Macroheterocycles, 2014, vol. 7, no. 2, p. 103.

    CAS  Google Scholar 

  99. Zenkevich, E.I., Macroheterocycles, 2016, vol. 9, no. 2, p. 1021.

    Google Scholar 

  100. Zenkevich, E., Shulga, A., Diller, R., Rempel, U., von Borczyskowski, C., and Stehlik, D., Abstracts of Papers, German Conf. “Physics of Condensed State”, Regensburg, 1993, p. 123.

    Google Scholar 

  101. von Borczyskowski, C., Rempel, U., Zenkevich, E.I., Shulga, A.M., Chernook, A.V., Proc. Indian Acad. Sci., Chem. Sci., 1995, vol. 107, no. 6, p. 803.

    Google Scholar 

  102. Zenkevich, E.I., Shulga, A.M., Chernook, A.V., Rempel, U., and von Borczyskowski, C., J. Mol. Struct., 1995, vol. 348, p. 441.

    Google Scholar 

  103. Chernook, A.V., Shulga, A.M., Zenkevich, E.I., Rempel, U., and von Borczyskowski, C., J. Phys. Chem., 1996, vol. 100, no. 5, p. 1918.

    CAS  Google Scholar 

  104. Chernook, A.V., Rempel, U., von Borczyskowski, C., Zenkevich, E.I., and Shulga, A., Chem. Phys. Lett., 1996, vol. 254, p. 229.

    CAS  Google Scholar 

  105. Zen’kevich, E.I., Shul’ga, A.M., Bachilo, S.M., Chernook, A.V., Rempel, U., and von Borczyskowski, C., Opt. Spektrosk., 1997, vol. 83, no. 5, p. 645.

    Google Scholar 

  106. Chernook A.V., Shulga A.M., Zenkevich E.I., Rempel U., and von Borczyskowski, C., Ber. Bunsenges. Phys. Chem., 1996, vol 100, p. 114.

    Google Scholar 

  107. Knyukshto, V., Zenkevich, E., Sagun, E., Shulga, A., and Bachilo, S., Chem. Phys. Lett., 1999, vol. 304, nos. 3–4, p. 155.

    Google Scholar 

  108. Bachilo, S., Willert, A., Rempel, U., Shulga, A.M., Zenkevich, E.I., and von Borczyskowski, C., J. Photochem. Photobiol. A: Chem., 1999, vol. 126, p. 99.

    Google Scholar 

  109. Zenkevich, E.I., Willert, A., Bachilo, S.M., Rempel, U., Kilin, D.S., Shulga, A.M., and von Borczyskowski, C., Mater. Sci. Eng. C, 2001, vol. 18, nos. 1–2, p. 99.

    Google Scholar 

  110. Zenkevich, E.I., von Borczyskowski, C., Shulga, A.M., Bachilo, S.M., Rempel, U., and Willert, A., Chem. Phys., 2002, vol. 275, nos. 1–3, p. 185.

    Google Scholar 

  111. Zenkevich, E.I., von Borczyskowski, C., and Shulga, A.M., J. Porphyrins Phthalocyanines, 2003, vol. 7, no. 11, p. 731.

    CAS  Google Scholar 

  112. Zen’kevich, E.I. and Tikhomirov, S.A., Teoreticheskie i eksperimental’nye metody khimii rastvorov (Theoretical and Experimental Methods of Solution Chemistry), Tsivadze, A.Yu., Moscow: Prospekt, 2011, chapter 4, p. 190.

  113. Kilin, D., Zenkevich, E., and von Borczyskowski, C., Proc. Int. Conf. “Nanomeeting-2015”. Physics, Chemistry and Applications of Nanostructures. Reviews and Short Notes, Borisenko, V.E., Gaponenko, S.V., Gurin, V.S., and Kam, C.H., Singapore: World Scientific, 2015, p. 14.

  114. Gouterman, M., J. Chem. Phys., 1964, vol. 41, no. 8, p. 2280.

    Google Scholar 

  115. Gurinovich, G.P., Zenkevich, E.I., and Shulga, A.M., Proc Int. Conf. on Excited States and Dynamics of Porphyrins, Gouterman, M., Rentzepis, P.M., and Straub, K.D., Eds., Washington: Am. Chem. Soc. Series, 1986.

  116. Zen’kevich, E.I., Shul’ga, A.M., Chernook, A.V., and Gurinovich, G.P., Khim. Fiz., 1987, vol. 6, no. 9, p. 1212.

    Google Scholar 

  117. Zen’kevich, E.I., Shul’ga, A.M., Chernook, A.V., Filatov, I.V., and Gurinovich, G.P., Teor. Eksp. Khim., 1989, vol. 25, no. 3, p. 295.

    Google Scholar 

  118. Knyukshto, V.N., Sagun, E.I., Shul’ga, A.M., Bachilo, S.M., and Zen’kevich, E.I., Zh. Prikl. Spektrosk., 1998, vol. 65, no. 4, p. 471.

    Google Scholar 

  119. Knyukshto, V.N., Zenkevich, E.I., Sagun, E.I., Shul’ga, A.M., and Bachilo, S.M., Chem. Phys. Lett., 1998, vol. 297, p. 97.

    CAS  Google Scholar 

  120. Knyukshto, V.N., Sagun, E.I., Shul’ga, A.M., Bachilo, S.M., and Zen’kevich, E.I., Khim. Fiz., 1999, vol. 18, no. 5, p. 30.

    CAS  Google Scholar 

  121. Zen’kevich, E.I., Sagun, E.I., Knyukshto, V.N., Shul’ga, A.M., and Bachilo, S.M., Uspekhi khimii porfirinov (Advances in Porphyrin Chemistry), Golubchikov, O.A., Ed., St. Petersburg: Sankt-Peterb. Univ., 2004, vol. 4, chapter 4, p. 76.

    Google Scholar 

  122. Chirvony, V.S., van Hoek A., Galievsky, V.A., Sazanovich, I.V., Schaafsma, T.J., and Holten, D., J. Phys. Chem. B, 2000, vol. 104, p. 9909.

    CAS  Google Scholar 

  123. Retsek, J.L., Gentemann, S., Medforth, C.J., Smith, K.M., Chirvony, V.S., Fajer, J., and Holten, D., J. Phys. Chem. B, 2000, vol. 104, p. 6690.

    CAS  Google Scholar 

  124. Avilov, I.V., Zenkevich, E.I., Sagun, E.I., and Filatov, I.V., J. Phys. Chem. A, 2004, vol. 108, p. 5684.

    CAS  Google Scholar 

  125. Röder, B., Büchner, M., Rückmann, I., and Senge, M.O., Photochem. Photobiol. Sci., 2010, vol. 9, p. 1152.

    Google Scholar 

  126. Sagun, E.I. and Zenkevich, E.I., Opt. Spectrosc., 2013, vol. 115, p. 727.

    CAS  Google Scholar 

  127. Gurinovich, G.P., Zen’kevich, E.I., Shul’ga, A.M., Sagun, E.I., Mauring, K., and Suysalu, A., Zh. Prikl. Spektrosk., 1984, vol. 41, no. 3, p. 446.

    CAS  Google Scholar 

  128. Brookfield, R.L., Ellul, H., and Harriman, A., J. Chem. Soc., Farad. Trans. 2, 1985, vol. 81, p. 1837.

    CAS  Google Scholar 

  129. Ohno, A., Ogasawara, Y., Asano, M., Kajii, Y., Kaizu, Y., Obi, K., and Kobayashi, H., J. Phys. Chem., 1987, vol. 91, p. 4269.

    CAS  Google Scholar 

  130. Mialocq, J.C., Gianotti, C., Maillard, P., and Momenteau, M., Chem. Phys. Lett., 1984, vol. 112, p. 87.

    CAS  Google Scholar 

  131. Hugerat, M., Levanon, H., Ojadi, E., Biczok, L., and Linschitz, H., Chem. Phys. Lett., 1991, vol. 181, p. 400.

    CAS  Google Scholar 

  132. Zen’kevich, E.I., Chernook, A.V., Shul’ga, A.M., Pershukevich, P.P., Gurinovich, G.P., and Sagun, E.I., Khim. Fiz., 1991, vol. 10, no. 9, p. 1183.

    Google Scholar 

  133. Dexter, D.L., J. Chem. Phys., 1953, vol. 21, no. 5, p. 836.

    CAS  Google Scholar 

  134. Moerner, W.E., Dickson, R.M., Cubitt, A.B., and Tsien, R.Y., Nature, 1997, vol. 388, p. 355.

    PubMed  Google Scholar 

  135. Bopp, M.A., Sytnik, A., Howard, T.D., Cogdell, R.J., and Hochstrasser, R.M., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 11271.

    CAS  PubMed  Google Scholar 

  136. Starukhin, A., Zenkevich, E., Shulga, A., and Chernook, A., J. Luminesc., 1996, vol. 68, p. 313.

    CAS  Google Scholar 

  137. Mauring, K., Suisalu, A., Kikas, J., Zenkevich, E.I., Chernook, A.V., Shulga, A.M., and Gurinovich, G.P., J. Luminesc., 1995, vol. 64, p. 141.

    CAS  Google Scholar 

  138. Zen’kevich, E.I., Starukhin, A.S., and Shul’ga, A.M., Zh. Prikl. Spektrosk., 1999, vol. 64, no. 4, p. 500.

    Google Scholar 

  139. Peterman, E.J.G., Pullerits, T., van Grondelle, R., and van Amerongen, H., J. Phys. Chem., 1997, vol. 101, p. 4448.

    CAS  Google Scholar 

  140. Marcus, R.A. and Sutin, N., Biochim. Biophys. Acta, 1985, vol. 811, p. 265.

    CAS  Google Scholar 

  141. Fukuzumi, S., The Porphyrin Handbook, Kadish, K.M., Smith, K.M., and Guilard, R., New York: Academic, 2000, vol. 8, p. 115.

    CAS  Google Scholar 

  142. Engel, G.S., Calhoun, T. R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., and Fleming, G.R., Nature, 2007, vol. 446, p. 782.

    CAS  PubMed  Google Scholar 

  143. Cotton, T.M. and Janson, T.R., The Porphyrins, Dolphin, D., New York: Academic, 1978, vol. 5, chapter 9, p. 402.

    Google Scholar 

  144. Litvin, F.F., Biokhimiya i biofizika fotosinteza (Biochemistry and Biophysics of Photosynthesis), Moscow: Nauka, 1965, p. 96.

    Google Scholar 

  145. Bystrova, M.I., Mal’gosheva, I.N., and Krasnovskii, A.A., Mol. Biol., 1976, vol. 10, no. 1, p. 193.

    CAS  Google Scholar 

  146. Krasnovskii, A.A., Lebedev, N.N., and Litvin, F.F., Dokl. Akad. Nauk SSSR, 1974, vol. 216, no. 6, p. 1406.

    CAS  PubMed  Google Scholar 

  147. Gurinovich, G.P., Losev, A.P., and Sagun, E.I., Zh. Prikl. Spektrosk., 1977, vol. 26, no. 6, p. 1028.

    CAS  Google Scholar 

  148. Sagun, E.I., Doctoral (Fiz.-Mat.) Dissertation, Minsk, 1994.

    Google Scholar 

  149. Linnanto, J., Helenius, V.M., Oksanen, J.A.I., Peltola, T., Garaud, J.-L., and Korppi-Tommola, J.E.I., J. Phys. Chem. A, 1998, vol. 102, p. 4337.

    CAS  Google Scholar 

  150. Linnanto, J., Oksanen, J.A.I., and Korppi-Tommola, J.E.I., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 3061.

    CAS  Google Scholar 

  151. Losev, A.P., Zen’kevich, E.I., and Gurinovich, G.P., Zh. Prikl. Spektrosk., 1973, vol. 19, no. 2, p. 262.

    CAS  Google Scholar 

  152. Zen’kevich, E.I., Kochubeev, G.A., Losev, A.P., and Gurinovich, G.P., Mol. Biol., 1979, vol. 13, no. 4, p. 888.

    Google Scholar 

  153. Zen’kevich, E.I. Sarzhevskaya, M.V., and Vitovtseva T.V., Zh. Prikl. Spektrosk., 1982, vol. 37, no. 5, p. 818.

    Google Scholar 

  154. Zen’kevich, E.I. and Zen’kevich, T.V., Mol. Biol., 1984, vol. 18, no. 3, p. 667

    Google Scholar 

  155. Zen’kevich, E.I., Losev, A.P., and Gurinovich, G.P., Mol. Biol., 1975, vol. 9, no. 4, p. 516.

    Google Scholar 

  156. Zenkevich, E.I., Losev, A.P., Kochubeev, G.A., and Gurinovich, G.P., J. Mol. Struct., 1978, vol. 45, p. 423.

    CAS  Google Scholar 

  157. Zen’kevich, E.I., Losev, A.P., Kochubeev, G.A., and Gurinovich, G.P., Izv. Akad. Nauk SSSR, Ser. Fiz., 1978, vol. 42, no. 3, p. 573.

    Google Scholar 

  158. Chirvonyi, V.S., Zenkevich, E.I., Gadonas, R., Krasauskas, V., and Pelakauskas, A., J. Luminesc., 1990, vol. 45, no. 106, p. 392.

    Google Scholar 

  159. Chirvonyi, V.S., Zen’kevich, E.I., Galievskii, V.A., Gadonas, R., Krasauskas, V., and Pyalakauskas, A., Khim. Fiz., 1991, vol. 10, no. 12, p. 1637.

    CAS  Google Scholar 

  160. Oksanen, J.A.I., Zenkevich, E.I., Knyukshto, V.N., Pakalnis, S., Hynninen, P.H., and Korrpi-Tommola, J.E.I., Biochim. Bioph. Acta–Bioenerg., 1997, vol. 1321, no. 2, p. 165.

    CAS  Google Scholar 

  161. Dobrinevskii, S.F., Tikhomirov, S.A., and Tolstorozhev, G.B., Zh. Prikl. Spektrosk., 1988, vol. 49, no. 6, p. 1020.

    CAS  Google Scholar 

  162. Khizhnyakov V.V. and Tekhver Yu.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1975, vol. 39, no. 9, p. 1895.

    CAS  Google Scholar 

  163. Zenkevich E., Stupak A., Göhler C., Krasselt C., and von Borczyskowski C., ACS Nano, 2015, vol. 9, no. 3, p. 2886.

    CAS  PubMed  Google Scholar 

  164. Davis, R.C., Knots, R.R., Seely, G.R., and Shaw, E.R., Biochem. Biophys. Res. Commun., 1985, vol. 126, no. 1, p. 610.

    Google Scholar 

  165. Porter, G., Progress in Reaction Kinetics, New York: Academic, 1965.

    Google Scholar 

  166. Zenkevich, E., Sagun, E., Knyukshto, V., Shulga, A., Mironov, A., Efremova, O., Bonnett, R., Pinda Songca, S., and Kassem, M., J. Phochem. Photobiol. B: Biol., 1996, vol. 33, p. 171.

    CAS  Google Scholar 

  167. Krasnovskii, A.A., Biofizika, 1976, vol. 21, no. 4, p. 748.

    CAS  PubMed  Google Scholar 

  168. Salokhiddinov, K.I., Byteva, I.M., and Dzagarov, B.M., Opt. Spektrosk., 1979, vol. 47, p. 881.

    CAS  Google Scholar 

  169. Krasnovsky, A.A., Egorov, S.Yu., and Nasarova, O.V., Stud. Biophys., 1988, vol. 124, nos. 2–3, p. 123.

    Google Scholar 

  170. Krasnovsky, A.A., Roumbal, Yu.V., Ivanov, A.V., and Ambartzumian, R.V., Chem. Phys. Lett., 2006, vol. 430, p. 260.

    CAS  Google Scholar 

  171. Bachilo, S.M., J. Photochem. Photobiol. A, 1995, vol. 91, p. 111.

    CAS  Google Scholar 

  172. Galievsky, V.A. Stasheuski, A.S., Kiselyov, V.V., Shabusov, A.I. Belkov, M.V., and Dzhagarov, B.M., Instr. Exp. Techn., 2010, 53, no. 4, p. 568.

    CAS  Google Scholar 

  173. Isakau, H.A., Parkhats, M.V., Knyukshto, V.N., Dzhagarov, B.M., Petrov, E.P., and Petrov, P.T., J. Photochem. Photobiol. B., 2008, vol. 92, p. 165.

    CAS  PubMed  Google Scholar 

  174. Sagun, E.I., Ganzha, V.A., Dzhagarov, B.M., and Shul’ga, A.M., Khim. Fiz., 1991, vol. 10, no. 4, p. 477.

    CAS  Google Scholar 

  175. Sagun, E.I., Zen’kevich, E.I., Knyukshto, V.N., and Shul’ga, A.M., Opt. Spektrosk., 2011, vol. 110, no. 2, p. 251.

    Google Scholar 

  176. Sagun, E.I., Zenkevich, E.I., Knyukshto, V.N., Shul’ga, A.M., Starukhin, D.A., and von Borczyskowski, C., Chem. Phys., 2002, vol. 275, nos. 1–3, p. 211.

    Google Scholar 

  177. Kruk, N.N., Dzhagarov, B.M., Galievsky, V.A., Chirvony, V.S., and Turpin, P.Y., J. Photochem. Photobiol. B., 1998, vol. 42, no. 3, p. 181.

    CAS  PubMed  Google Scholar 

  178. Zenkevich, E.I., Sagun, E.I., Knyukshto, V.N., Stasheuski, A.S., Galievsky, V.A., Stupak, A.P., Blaudeck, T., and von Borczyskowski, C., J. Phys. Chem. C, 2011, vol. 115, p. 21535.

    CAS  Google Scholar 

  179. Zenkevich, E. and von Borczyskowski, C., Photoinduced Processes at Surfaces and in Nanomaterials, ACS Symposium Series, Kilin, D., Washington, DC: Am. Chem. Soc., 2015, vol. 1196, chapter 12, p. 235–272

    CAS  Google Scholar 

  180. Semenov, N.N., Nauka Zhizn, 1972, no. 11, p. 25.

    Google Scholar 

Download references

Acknowledgments

The research, the results of which are described and discussed in the present review, have been carried out for many years. A number of publications cited here were created in the co-authorship of Belarussian scientists with scientists from Russia, Ukraine, Germany, Finland, and Poland. I consider it my pleasant duty to express gratitude to all the co-authors (highly qualified specialists in chemistry, spectroscopy, and photonics), the collaborative work with whom was interesting and fruitful.

Funding

Over the past years these studies have been supported by national projects in the frameworks of the “Nanomaterials and Nanotechnologies 6.18 Light-Harvesting Antenna Systems on the Basis of Self-Assembled Ensembles of Semiconductor Nanoparticles” State integrated scientific research program; #x201C;Convergence” 3.2.08 Photophysics of Nanobioconjugates, Semiconductor and Metal Nanostructures and Supramolecular Complexes and Their Biomedical Applications” State program for scientific research; “Convergence,” Task: Convergence- 2020 3.03: Investigate the Properties of Integrated Nanostructures and Develop Methods of Diagnosis and Propose Their Applications” State program for scientific research, as well as a number of international grants in the frameworks of the “Self-Organization of Single Molecules on Single Quantum Dots” Volkswagen International Project (no. 1/79 435); #x201C;Spectroscopy of Single Nano-objects Immobilized on Heterogeneous Surfaces” Grant of the German Society for Academic Exchanges (DAAD) (no. A/08/08573); “Controlled Diffusion in nanomaterials” International project DFG Priority Unit FOR 877, Sachsischen Forschengruppe; “Metal Complexes of Macrocyclic Compounds for Photonic Devices” International project H2020-MSCA-RISE-2014-METCOPH (grant no. 645628); and “Electronic Properties of Light-Harvesting Proteins” International project ECO-NET (program no. 18905YD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zenkevich.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2017, published in Rossiiskii Khimicheskii Zhurnal, 2017, Vol. 61, No. 3, pp. 110–142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, E.I. Еxcitation Energy Relaxation Processes Involving Chlorophyll Molecules In Vitro: Solutions and Self-Organized Nanoassemblies. Russ J Gen Chem 89, 2650–2681 (2019). https://doi.org/10.1134/S1070363219120442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219120442

Keywords

Navigation