Skip to main content
Log in

Photoconductivity, Antioxidant, and Antimicrobial Activities of Some Acenaphthenequinone Derivatives

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Photoconductive acenaphthenequinone derivatives have been synthesized by a one-pot process of acenaphthenequinone with different aromatic hydrazides (nicotinic, isonicotinic, 2-thiophenecarboxylic, 2-furoic, 3-methoxybenzoic, 3-hydroxy-2-naphthoic, and 2,4-dihydroxybenzoic). Their structures are supported by elemental analysis, 1H and 13C NMR, IR, and MS spectroscopy. Photoelectrochemical (PEC) measurements reveal that the compounds demonstrate photoresponse upon illumination by light of intensities 1000 and 10000 W/m2. The photoconductivity behaviors of the derivatives is enhanced in the presence of electron donor groups attached to the aromatic ring. Thereby, these products may be used in material devices as organic thin film transistors, on/off sensors, etc. The antioxidant activity of the products has been tested by DPPH radical scavenging method in vitro, indicates their significant potential. Antimicrobial activity of the derivatives has been estimated by minimum inhibitory concentration (MIC, mg/mL) using the micro-broth dilution method. The compounds are moderately active against some Gram positive bacteria and Candida albicans and completely inactive against Gram negative bacteria tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirata, S., Sakai, Y., Masui, K., Tanaka, H., Lee, S.Y., Nomura, H., Nakamura, N., Yasumatsu, M., Nakanotani, H., Zhang, Q., Shizu, K., Miyazaki, H., and Adachi, C., Nat. Mater., 2015, vol. 14, p. 330. https://doi.org/10.1038/nmat4154

    Article  CAS  Google Scholar 

  2. Namai, H., Ikeda, H., Hoshi, Y., Kato, N., Morishita, Y., and Mizuno, K., J. Am. Chem. Soc., 2007, vol. 129, p. 9032. https://doi.org/10.1021/ja070946+

    Article  CAS  Google Scholar 

  3. Lin, Y., Li, Y., and Zhan, X., Chem. Soc. Rev., 2012, vol. 41, p. 4245. https://doi.org/10.1039/C2CS15313K

    Article  CAS  Google Scholar 

  4. Ooyama, Y., Uenaka, K., Sato, T., Shibayama, N., and Ohshita, J., RSC Adv., 2015, vol. 5, p. 2531. https://doi.org/10.1039/C4RA14190C

    Article  CAS  Google Scholar 

  5. Wang, Y., Zou, S., Gao, J., Zhang, H., Lai, G., Yang, C., Xie, H., Fang, R., Li, H., and Hu, W., Chem. Commun., 2015, vol. 51, p. 11961. https://doi.org/10.1039/C5CC03305E

    Article  CAS  Google Scholar 

  6. Yamamoto, A., Matsui, Y., Asada, T., Kumeda, M., T akagi, K., Suenaga, Y., Nagae, K., Ohta, E., Sato, H., Koseki, S., Naito, H., and Ikeda, H., J. Org. Chem., 2016, vol. 81, p. 3168. https://doi.org/10.1021/acs.joc.6b00117

    Article  CAS  Google Scholar 

  7. Madhavan, N., Small-Molecule Organic Semiconductors. http://www.scs.uiuc.edu/chem/gradprogram/chem435/s02-Madhavan.pdf(2002)49-56.

  8. Mhaidat, I., Hamilakis, S., Kollia, C., Tsolomitis, A., and Loizos, Z., Matter. Let., 2008, vol. 62, p. 4201. https://doi.org/10.1016/j.matlet.2008.06.022

    Article  CAS  Google Scholar 

  9. Mhaidat, I., Hamilakis, S., Kollia, C., Tsolomitis, A., and Loizos, Z., AMatter. Let., 2008, vol. 62, p. 4198. https://doi.org/10.1016/j.matlet.2008.06.021

    Article  CAS  Google Scholar 

  10. Chountoulesi, E., Mitzithra, C., Hamilakis, S., Kordatos, K., Kollia, C., and Loizos, Z., Synthetic Communications, 2013, vol. 43, p. 2042. https://doi.org/10.1080/00397911.2012.679332

    Article  CAS  Google Scholar 

  11. Olayinka, O.A., Craig, A.O., Obinna, C.N., and David, A.A., Bioorg. Med. Chem., 2010, vol. 18, p. 214. https://doi.org/10.1016/j.bmc.2009.10.064

    Article  Google Scholar 

  12. Bijev, A., Lett. Drug.Des. Discov., 2006, vol. 3, p. 506. https://doi.org/10.2174/157018006778194790

    Article  CAS  Google Scholar 

  13. Gürsoy, E., and Güzeldemirci, U.N., Eur. J. Med. Chem., 2007, vol. 42, p. 320. https://doi.org/10.1016/j.ejmech.2006.10.012

    Article  Google Scholar 

  14. Ragavendran, J.V., Sriram, D., Patel, S.K., Reddy, I.V., Bharathwajan, N., Stables, J., and Yogeeswari, P., Eur. J. Med. Chem., 2007, vol. 42, p. 146. https://doi.org/10.1016/j.ejmech.2006.08.010

    Article  CAS  Google Scholar 

  15. Ergenç, N., and Günay, N.S., Eur. J. Med. Chem., 1998, vol. 33, p. 143.

    Article  Google Scholar 

  16. Todeschini, A.R., Miranda, A.L. P-d., Silva, K.C. M-d., Parrini, S.C., and Barreiro, E.J., Eur. J. Med. Chem., 1998, vol. 33, p. 189. https://doi.org/10.1016/S0223-5234(98)80008-1

    Article  CAS  Google Scholar 

  17. Gemma, S., Kukreja, G., Fattorusso, C., Persico, M., Romano, M., Altarelli, M., Savini, L., Campiani, G., Fattorusso, E., Basilico, N., Taramelli, D., Yardley, V., and Butini, S., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 5384. https://doi.org/10.1016/j.bmcl.2006.07.060

    Article  CAS  Google Scholar 

  18. Masunari, A., and Tavaris, L.C., Bioorg. Med. Chem., 2007, vol. 15, p. 4229. https://doi.org/10.1016/j.bmc.2007.03.068

    Article  CAS  Google Scholar 

  19. Nallasamy, D., Viswanathamurthi, P., and Natarajan, K., Trans. Met. Chem., 2001, vol. 26, p. 105. https://doi.org/10.1023/A:1007132408648

    Article  Google Scholar 

  20. Corona-Bustamante, A., Viveros-Paredes, J.M., Flores-Parra, A., Peraza-Campos, A.L., Martínez-Martínez, F.J., Sumaya-Martínez, M.T., and Ramos-Organillo, Á., Molecules, 2010, vol. 15, p. 5445. https://doi.org/10.3390/molecules15085445

    Article  CAS  Google Scholar 

  21. Al-Amiery, A.A., Al-Majedy, Y.K., Ibrahim, H.H., and Al- Tamimi, A.A., Org. Med. Chem. Lett., 2012, vol. 2, p. 4. https://doi.org/10.1186/2191-2858-2-4

    Article  Google Scholar 

  22. El Ashry, E.S.H., Nassr, M.A.M., Abdallah, A.A., and Shoukry, M., Ind. J. Chem., 1980, vol. 19B, p. 612.

    CAS  Google Scholar 

  23. El Ashry, E.S.H., Abdel Hamid, H., and Shoukry, M., Ind. J. Heterocycl. Chem., 1998, vol. 7, p. 313.

    CAS  Google Scholar 

  24. Hosseini, M., Ganjali, M.R., Veismohammadi, B., Norouzi, P., Alizadeh, K., and Abkenar, S.D., Mat. Sci. Eng. C.: Mater., 2010, vol. 30, p. 348. https://doi.org/10.1016/j.msec.2009.11.011

    Article  CAS  Google Scholar 

  25. Faridbod, F., Mohammad, R., Pirali-Hamedani, M., and Norouzi, P., Int. J. Electrochem. Sci., 2010, vol. 5, p. 1103.

    CAS  Google Scholar 

  26. Hannan, C.P., Vet. Res. 2000, vol. 31, p. 373. https://doi.org/10.1051/vetres:2000100

    Article  CAS  Google Scholar 

  27. Wayne, P.A., Clinical and Laboratory Standards Institute (CLSI). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline-2nd Edition, CLSI Document M44-A2, New York, 2009.

    Google Scholar 

Download references

Funding

Financial support for this work was provided by Deanship of Research at Yarmouk University [project number 22/2016]. Authors are very grateful to Dr. Tariq M.A. Al Shboul for elemental analysis (Department of Chemistry, Tafila Technical University, Al-Tafila, Jordan). Authors are thankful to Dr. C. Mitzithra and Dr. S. Hamilakis for the photoconductivity measurements (School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mhaidat.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhaidat, I., Taha, Z.A., Al Momani, W. et al. Photoconductivity, Antioxidant, and Antimicrobial Activities of Some Acenaphthenequinone Derivatives. Russ J Gen Chem 89, 2584–2590 (2019). https://doi.org/10.1134/S1070363219120399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219120399

Keywords

Navigation