Skip to main content
Log in

Kumada Cross Coupling Reaction for the Synthesis of Quinazoline Derivatives, Evaluation of Their Antibacterial Activity and Docking Studies

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of C7-substituted-2-morpholino-N-(pyridin-2-ylmethyl)quinazolin-4-amine derivatives 3a3t were synthesized by using Nickel catalyzed Kumada cross coupling reaction. The structure of the key intermediate 2 was assigned using 2D COSY and 2D NOESY correlation spectrum. All the target compounds were characterized and tested for their antibacterial activity against Gram-positive organisms such as Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, and Gram-negative organisms such as Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. The results indicated that compounds 3g3m exhibited potent antibacterial activity with MIC values ranging from 1.17 to 4.68 μg/mL. These results are expected to be of help in understanding the structure activity relationship and further enable us to design novel antibacterial agents. Molecular docking of Escherichia coli Biotin Carboxylase (EcBC) enzyme was also performed in order to study the interactions of the synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parhi, A.K., Zhang, Y., Saionz, K.W., Pradhan, P., Kaul, M., Trivedi, K., Pilch, D.S., and LaVoie, E.J., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 4968. https://doi.org/10.1016/j.bmcl.2013.06.048

    Article  CAS  Google Scholar 

  2. Chevalier, J., Mahamoud, A., Baitiche, M., Adam, E., Viveiros, M., Smarandache, A., Militaru, A., Pascu, M.L., Amaral, L., and Pages, J., Int. J. Antimicrob. Agents., 2010, vol. 36, p. 164. https://doi.org/10.1016/j.ijantimicag.2010.03.027

    Article  CAS  Google Scholar 

  3. Thatipamula, R.K., Narsimha, S., Battula, K., Chary, V.R., Estari, M., and Vasudeva Reddy, N., J., Saudi Chem. Soc., 2015, vol. 21, no. 7. https://doi.org/10.1016/j.ijantimicag.2010.03.027

    Google Scholar 

  4. Kung, P., Casper, M.D., Cook, K.L., Wilson- Lingardo, L., Risen, L.M., Vickers, T.A., Ranken, R., Blyn, L.B., Wyatt, J.R., Cook, P.D., and Ecker, D.J., J. Med. Chem., 1999, vol. 42, p. 4705. https://doi.org/10.1021/jm9903500

    Article  CAS  Google Scholar 

  5. Rojas-Aguirre, Y., Hernández-Luis, F., Mendoza-Martínez, C., Sotomayor, C.P., Aguilar, L.F., Villena, F., Castillo, I., Hernández, D.J., and Suwalsky, M., Biochim. Biophys. Acta., 2012, vol. 1818, p. 738. https://doi.org/10.1016/j.bbamem.2011.11.026

    Article  CAS  Google Scholar 

  6. Noolvi, M.N., Patel, H.M., Bhardwaj, V., and Chauhan, A., Eur. J. Med. Chem., 2011, vol. 46, p. 2327. https://doi.org/10.1016/j.ejmech.2011.03.015

    Article  CAS  Google Scholar 

  7. Ryu, C.K., Hui Kim, Y., Ah Im, H., Kim, J.Y., Yoon, J.H., and Kim, A., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 500. https://doi.org/10.1016/j.bmcl.2011.10.099

    Article  CAS  Google Scholar 

  8. Suresh Kumar, K., Ganguly, S., Veerasamy, R., and Clercq, E.D., Eur. J. Med. Chem., 2010, vol. 45, p. 5474. https://doi.org/10.1016/j.ejmech.2010.07.058

    Article  Google Scholar 

  9. Chandrika, P.M., Yakaiah, T., Ram Rao, A.R., Narsaiah, B., Chakra Reddy, N., Sridha, V., and Venkateshwara Rao, J., Eur. J. Med. Chem., 2008, vol. 43, p. 846. https://doi.org/10.1016/j.ejmech.2007.06.010

    Article  CAS  Google Scholar 

  10. Wang, H.J., Wei, C.X., Deng, X.Q., Li, F.L., and Quan, Z.S., Arch. Pharm. Chem. Life Sci., 2009, vol. 342, p. 671. https://doi.org/10.1002/ardp.200900119

    Article  CAS  Google Scholar 

  11. Jatav, V., Mishra, P., Kashaw, S., and Stables, J.P., Eur. J. Med. Chem., 2008, vol. 43, p. 1945. https://doi.org/10.1016/j.ejmech.2007.12.003

    Article  CAS  Google Scholar 

  12. Jatav, V., Kashaw, S., and Mishra, P., Med. Chem. Res., 2008, vol. 17, p. 169. https://doi.org/10.1007/s00044-007-9047-2

    Article  CAS  Google Scholar 

  13. Veerapandian, M., Marimuthu, M., Ilangovan, P., Ganguly, S., Yun, K.S., Kim, S., and An, J., Med. Chem. Res., 2010, vol. 19, p. 283. https://doi.org/10.1007/s00044-009-9191-y

    Article  CAS  Google Scholar 

  14. Ji, Q.G., Yang, D., Deng, Q., Ge, Z.Q., and Yuan, L.J., Med. Chem. Res., 2014, vol. 23, p. 2169. https://doi.org/10.1007/s00044-013-0813-z

    Article  CAS  Google Scholar 

  15. Patel, A.B, H, Kishor., Chikhalia., and Kumari, P., Med. Chem. Res., 2014, vol. 23, p. 2338. https://doi.org/10.1007/s00044-013-0839-2

    Article  CAS  Google Scholar 

  16. Sriram, D., RatanBal, T., and Yogeeswari, P., Med. Chem. Res., 2005, vol. 14, no. 4, p. 211. https://doi.org/10.1007/s00044-005-0135-x

    Article  CAS  Google Scholar 

  17. Jiang, Z., Hong, W.D., Cui, X., Gao, H., Wu, P., Chen, Y., Shen, D., Yang, Y., Zhang, B., Taylor, M.J., Ward, S.A., O’Neill, P.M., Zhao, S., and Zhang, K., RSC Adv., 2017, vol. 7, p. 52227. https://doi.org/10.1039/c7ra10352b

    Article  CAS  Google Scholar 

  18. Ankireddy, A., Gundla, R., Balaraju, T., Banothu, V., Gundla, K.P., Addepally, U., and Chimakurthy, J., Eur. J. Chem., 2018, vol. 9, no. 4, p. 322.

    Article  CAS  Google Scholar 

  19. Ankireddy, A., Gundla, R., Balaraju, T., Banothu, V., Kalyani, P., and Manohar, M., Der Pharma Chem., 2018, vol. 10, no. 11, p. 40. https://doi.org/10.5155/eurjchem.9.4.322-330.1748

    CAS  Google Scholar 

  20. Zheng, G., Dwoskin, L.P., Deaciuc, A.G., and Crooks, P.A., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 6509. https://doi.org/10.1016/j.bmcl.2008.10.042

    Article  CAS  Google Scholar 

  21. Burkholder, T.P., Cunningham, B.E., Clayton, J.R., Lander, P.A., Brown, M.L., Doti, R.A., Durst, G.L., Montrose-Rafizadeh, C., King, C., Osborne, H.E., Amos, R.M., Zink, R.W., Stramm, L.E., Burris, T.P., Cardona, G., Konkol, D.L., Reidy, C., Christe, M.E., and Genin, M.J., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 1377. https://doi.org/10.1016/j.bmcl.2015.02.062

    Article  CAS  Google Scholar 

  22. Xile, Hu., Chem. Sci., 2011, vol 2, p. 1867. https://doi.org/10.1039/c1sc00368b

    Google Scholar 

  23. Berding, J., van Dijkman, T.F., Lutz, M., Spek, A.L., and Bouwman, E., Dalton Trans., 2009, p. 6948. https://doi.org/10.1039/b905036a

    Google Scholar 

  24. Liang, L.C., Lee, W.Y., Hung, Y.T., Hsiao, Y.C., Cheng, L.C., and Chen, W.C., Dalton Trans., 2012, vol. 41, p. 1381. https://doi.org/10.1039/c1dt11338k

    Article  CAS  Google Scholar 

  25. Ye, X., Yuan, Z., Zhou, Y., Yang, Q., Xie, Y., Deng, Z., and Peng, Y., J. Heterocycl. Chem., 2015. https://doi.org/10.1002/jhet.2513.

    Google Scholar 

  26. Mphahlele, M.J., and Maluleka M.M., Molecules, 2014, vol. 19, p. 17435. https://doi.org/10.3390/molecules191117435

    Article  Google Scholar 

  27. Kiss, A., Hell, Z., and Balint, M., Org. Biomol. Chem., 2010, vol. 8, p. 331. https://doi.org/10.1039/b919246h

    Article  CAS  Google Scholar 

  28. National Committee for Clinical Laboratory (NCCL), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, which Grows Aerobically, 5 ed., Approved Standard M7-A5, Nat. Comm. Clini. Lab. stands, Villanova, PA, 2000.

    Google Scholar 

  29. Jin, Z., Jiawen, Z., Liangpeng, W., Jia, L., Decheng, R., and Yangmin, M., Tetrahedron., 2016, vol. 72, no. 7, p. 936. https://doi.org/10.1016/j.tet.2015.12.055

    Article  Google Scholar 

  30. Yangmin, M., Decheng, R., Jin, Z., Jia, L., Jiawen, Z., Liangpeng, W., and Fan Z., Tetrahedron Lett., 2015, vol. 56, no. 27, p. 4076. https://doi.org/10.1016/j.tetlet.2015.05.020

    Article  Google Scholar 

  31. Wang, Y.T., Qin, Y.J., Yang, N., Zhang, Y.L., Lin,C.-H., and Zhu, H.-L., Eur. J. Med. Chem., 2015, vol. 99, no. 24, p. 125. https://doi.org/10.1016/j.ejmech.2015.05.021

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge Department of Science and Technology (DST) (DST-SERB-ECR/2016/000288) India for providing the financial assistence and Gandhi Institute of Technology (GITAM) University for providing the facility. We would like to thank Prof.G.A.Rama Rao, Principal SoS, (GITAM), for his valuble suggestions while preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gundla.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankireddy, A.R., Syed, R., Gundla, R. et al. Kumada Cross Coupling Reaction for the Synthesis of Quinazoline Derivatives, Evaluation of Their Antibacterial Activity and Docking Studies. Russ J Gen Chem 89, 2544–2557 (2019). https://doi.org/10.1134/S107036321912034X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321912034X

Keywords

Navigation