Skip to main content
Log in

SrO-Bi2O3-Fe2O3-Based Composites: Synthesis and Electrophysical Properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New composite solid electrolytes formed in the SrO–Bi2O3–Fe2O3 system have been studied. The total electrical conductivity of the composites synthesized via the solid-phase method increases with an increase in the Fe2O3 content, being of mixed ion-electronic nature. Dependence of the fraction of ionic conductivity on the composition has been established. The resulting materials have exhibited photocatalytic activity and are interesting as elements of electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sammes, N.M., Tompsett, G.A., Näfe, H., and Aldinger, F., J. Eur. Cer. Soc., 1999, vol. 19, p. 1801. https://doi.org/10.1016/S0955-2219(99)00009-6

    Article  CAS  Google Scholar 

  2. Takahashi, T., Iwahara, H., and Nagai, Y., J. Appl. Electrochem., 1972, vol. 2, p. 97. https://doi.org/10.1007/BF00609125

    Article  CAS  Google Scholar 

  3. Azad, A.M., Larose, S., and Akbar, S.A., J. Mater. Sci., 1994, vol. 29, p. 4135. https://doi.org/10.1007/BF00414192

    Article  CAS  Google Scholar 

  4. Kharitonova, E.P., Orlova, E.I., Gorshkov, N.V., Goffman, V.G., and Voronkova, V.I., Ceram. Int., 2018, vol. 44, no. 11, p. 12886. https://doi.org/10.1016/j.ceramint.2018.04.099

    Article  CAS  Google Scholar 

  5. Jung, D.W., Duncan, K.L., Camaratta, M.A., Lee, K.T., Nino, J.C., and Wachsman, E.D., J. Am. Ceram. Soc., 2010, vol. 93, p. 1384. https://doi.org/10.1111/j.1551-2916.2009.03541.x

    CAS  Google Scholar 

  6. Besprozvannykh, N.V., Sinel’shchikova O.Yu., and Kuchaeva, S.K., Glass Phys. Chem., 2018, vol. 44, no. 6, p. 641. https://doi.org/10.1134/S1087659618060020

    Article  CAS  Google Scholar 

  7. Watanabe, A. and Sekita, M., Solid State Ionics, 2005, vol. 176, p. 2429. https://doi.org/10.1016/j.ssi.2005.02.027

    Article  CAS  Google Scholar 

  8. Mezentseva, L.P., Sinel’shhikova, O.Yu., Besprozvan-nykh, N.V., Osipov, A.V., Ugolkov, V.L., and Kuchaeva, S.K., Izv. SPbGTI (TU), 2016, no. 35 (61), p. 14.

    Google Scholar 

  9. Ilic, N.I., Bobic, J.D., Stojadinovic, B.S., Dzunuzovic, A.S., Vijatovic Petrovic, M.M., Dohcevic-Mitrovic, Z.D., and Stojanovic, B.D., Mater. Res. Bull., 2016, vol. 77, p. 60. https://doi.org/10.1016/j.materresbull.2016.01.018

    Article  CAS  Google Scholar 

  10. Pedro-García, F., Bolarín-Miró, A.M., Sánchez-De Jesús, F., Cortés-Escobedo, C.A., Valdez-Nava, Z., and Torres-Villaseñor, G., Ceram. Int., 2018, vol. 44, no. 7, p. 8087. https://doi.org/10.1016/j.ceramint.2018.01.251

    Article  Google Scholar 

  11. Dhir, G., Uniyal, P., and Verma, N.K., Physica (B), 2018, vol. 531, p. 51. https://doi.org/10.1016/j.physb.2017.12.004

    Article  CAS  Google Scholar 

  12. Hussain, Sh. and Hasanain, S.K., J. Alloy. Compd. A, 2016, vol. 688, p. 1151. https://doi.org/10.1016/j.jallcom.2016.07.158

    Article  CAS  Google Scholar 

  13. Wang, B., Wang Sh., Gong, L., and Zhou, Zh., Ceram. Int., 2012, vol. 38, no. 8, p. 6643. https://doi.org/10.1016/j.ceramint.2012.05.051

    Article  CAS  Google Scholar 

  14. Sun, Y., Xiong, X., Xia, Z., Liu, H., Zhou, Y., Luo, M., and Wang, C., Ceram. Int., 2013, vol. 39, no. 4, p. 4651. https://doi.org/10.1016/j.ceramint.2012.10.212

    Article  CAS  Google Scholar 

  15. Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., Ugolkov, V.L., Panchuk, V.V., Semenov, V.G., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., J. Nanopart. Res., 2018, vol. 20, no. 2. Article 17. https://doi.org/10.1007/s11051-018-4125-6

    Google Scholar 

  16. de Góis, M.M., de Paiva Araújo, W., da Silva, R.B., da Luz Jr., G.E., and Soares, J.M., J. Alloys Compd., 2019, vol. 785, p. 598. https://doi.org/10.1016/j.jallcom.2019.01.168

    Article  Google Scholar 

  17. Xiong, Zh., and Cao, L., J. Alloys Compd., 2019, vol. 773, p. 828. https://doi.org/10.1016/j.jallcom.2018.09.344

    Article  CAS  Google Scholar 

  18. Morozov, M.I., Lomanova, N.A., and Gusarov, V. V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. https://doi.org/10.1023/B:RUGC.0000018640.30953.70

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in the scope of the State Task to the Institute of Silicates Chemistry, RAS (Program of Fundamental Research of State Academies 2019–2021, topic no. 0097-2019-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Besprozvannykh.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 12, pp. 1955–1960.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besprozvannykh, N.V., Ershov, D.S. & Sinelshchikova, O.Y. SrO-Bi2O3-Fe2O3-Based Composites: Synthesis and Electrophysical Properties. Russ J Gen Chem 89, 2458–2462 (2019). https://doi.org/10.1134/S1070363219120211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219120211

Keywords

Navigation