Skip to main content
Log in

Structure of the Li+ Ion Close Environment in Various Solvents

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The literature data on various methods for studying structural characteristics of the Li+ ion close environment in a number of oxygen-containing solvents were generalized. The coordination numbers of the Li+ cation, interparticle distances, and types of ionic association were discussed. The number of coordinated solvent molecules and the Li+–O distance in the first coordination shell are independent of the nature of the considered solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2006, vol. 76, no. 2, p. 187. https://doi.org/10.1134/S1070363206020034

    Google Scholar 

  2. Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., and Yamada, A., J. Am. Chem. Soc., 2014, vol. 136, no. 13, p. 5039. https://doi.org/10.1021/ja412807w

    CAS  PubMed  Google Scholar 

  3. Ikeda, T., Boero, M., and Terakura, K., J. Chem. Phys., 2007, vol. 126, p. 034501. https://doi.org/10.1063/1.2424710

    PubMed  Google Scholar 

  4. Pluharova, E., Mason, P.E., and Jungwirth, P., J. Phys. Chem. (A), 2013, vol. 117, no. 46, p. 11766. https://doi.org/10.1021/jp402532e

    CAS  Google Scholar 

  5. Allolio, C., Salas-Illanes, N., Desmukh, Y.S., Hansen, M.R., and Sebastiani, D., J. Phys. Chem. (B), 2013, vol. 117, no. 34, p. 9939. https://doi.org/10.1021/jp4033468

    CAS  Google Scholar 

  6. Zeng, Y., Wang, C., Zhang, X., and Ju, S., Chem. Phys., 2014, vol. 433, p. 89. https://doi.org/10.1016/j.chemphys.2014.02.006

    CAS  Google Scholar 

  7. Sripa, P., Tongraar, A., and Kerdcharoen, T., J. Mol. Liq., 2015, vol. 208, p. 280. https://doi.org/10.1016/j.molliq.2015.04.054

    CAS  Google Scholar 

  8. Yamaguchi, T., Ohzono, H., Yamagami, M., Yamanaka, K., and Yoshida, K., Wakita, H., J. Mol. Liq., 2010, vol. 153, no. 1, p. 2. https://doi.org/10.1016/j.molliq.2009.10.012

    CAS  Google Scholar 

  9. Winkel, K., Seidl, M., Loerting, T., Bove, L.E., Imberti, S., Molinero, V., Bruni, F., Mancinelli, R., and Ricci, M.A., J. Chem. Phys., 2011, vol. 134, no. 2, p. 024515. https://doi.org/10.1063/1.3528000

    CAS  PubMed  Google Scholar 

  10. Mähler, J. and Persson, I., Inorg. Chem., 2012, vol. 51, no. 1, p. 425. https://doi.org/10.1021/ic2018693

    PubMed  Google Scholar 

  11. Zhou, Y., Xu, S., Fang, Y., Fang, C., and Zhu, F., J. Clust. Sci., 2016, vol. 27, p. 1131. https://doi.org/10.1007/s10876-015-0948-9

    CAS  Google Scholar 

  12. Zhu, F., Zhou, Y., Fang, C., Fang, Y., Ge, H., and Liu, H., Phys. Chem. Liq., 2017, vol. 55, no. 2, p. 186. https://doi.org/10.1080/00319104.2016.118300

    CAS  Google Scholar 

  13. Kameda, Y., Miyazaki, T., Otomo, T., Amo, Y., and Usuki, T., J. Solut. Chem., 2014, vol. 43, no. 9–10, p. 1588. https://doi.org/10.1007/s10953-014-0223-y

    CAS  Google Scholar 

  14. Miyazaki, T., Kameda, Y., Amo, Y., and Usuk, T., Bull. Chem. Soc. Jap., 2013, vol. 86, no. 1, p. 104. https://doi.org/10.1246/bcsj.20120225

    CAS  Google Scholar 

  15. Kameda, Y., Maeda, S., Amo, Y., Usuki,T., Ikeda, K., and Otomo, T., J. Phys. Chem. B, 2018, vol. 122, no. 5, p. 1695. https://doi.org/10.1021/acs.jpcb.7b12218

    CAS  PubMed  Google Scholar 

  16. Mason, P.E., Ansell, S., Neilson, G.W., and Rempe, S.B., J. Phys. Chem. (B), 2015, vol. 119, no. 5, p. 2003. https://doi.org/10.1021/jp511508n

    CAS  Google Scholar 

  17. Bouazizi, S. and Nasr, S., J. Mol. Struct., 2007, vol. 837, nos. 1–3, p. 206. https://doi.org/10.1016/j.molstruc.2006.10.017

    Google Scholar 

  18. Bouazizi, S. and Nasr, S., J. Mol. Struct. 2008, vol. 875, nos. 1–3, p. 121. https://doi.org/10.1016/j.molstruc.2007.04.017

    CAS  Google Scholar 

  19. Harsányi, I., Bopp, Ph.A., Vrhovšek, A., and Pusztai, L., J. Mol. Liq. 2011, vol. 158, no. 1, p. 61. https://doi.org/10.1016/j.molliq.2010.10.010

    Google Scholar 

  20. Harsanyi, I. and Pusztai, L., J. Chem. Phys., 2012, vol. 137, no. 20, p. 204503. https://doi.org/10.1063/1.4767437

    CAS  PubMed  Google Scholar 

  21. Harsanyi, I., Temleitner, L., Beuneu, B., and Pusztai, L., J. Mol. Liq., 2012, vol. 165, p. 94. https://doi.org/10.1016/j.molliq.2011.10.014

    CAS  Google Scholar 

  22. Kameda, Y., Sasaki, M., Amo, Y., and Usuki, T., J. Non-Cryst. Solids, 2007, vol. 353, nos. 32–40, p. 3074. https://doi.org/10.1016/j.jnoncrysol.2007.05.039

    CAS  Google Scholar 

  23. Du, H., Rasaiah, J.C., and Miller, J.D., J. Phys. Chem. (B), 2007, vol. 111, no. 1, p. 209. https://doi.org/10.1021/jp064659o

    CAS  Google Scholar 

  24. Gee, M.B., Cox, N.R., Jiao, Y., Bentenitis, N., Weerasinghe, S., and Smith, P.E., J. Chem. Theory Comput., 2011, vol. 7, no. 5, p. 1369. https://doi.org/10.1021/ct100517z

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeuchi, M., Matubayasi, N., Kameda, Y., Minofar, B., Ishiguro, S., and Umebayashi, Y., J. Phys. Chem. (B), 2012, vol. 116, no. 22, p. 6476. https://doi.org/10.1021/jp3011487

    CAS  Google Scholar 

  26. Xie, W.J., Zhang, Z., and Gao, Y.Q., J. Phys. Chem. (B), 2016, vol. 120, no. 9, p. 2343. https://doi.org/10.1021/acs.jpcb.5b10755

    CAS  Google Scholar 

  27. Singh, M.B., Dalvi, V.H., and Gaikar, V.G., RSC Adv., 2015, vol. 5, no. 20, p. 15328. https://doi.org/10.1039/C4RA15124K

    CAS  Google Scholar 

  28. Pethes, I., J. Mol. Liq., 2018, vol. 264, p. 179. https://doi.org/10.1016/j.molliq.2018.05.044

    CAS  Google Scholar 

  29. Han, S., RSC Adv., 2019, vol. 9, no. 2, p. 609. https://doi.org/10.1039/C8RA09589B

    CAS  Google Scholar 

  30. Symons, M.C.R., J. Chem. Soc. Faraday Trans. 1, 1983, vol. 79, no. 5, p. 1273. https://doi.org/10.1039/F19837901273

    CAS  Google Scholar 

  31. Impey, R.W., Sprik, M., and Klein, M.L., J. Am. Chem. Soc., 1987, vol. 109, no. 20, p. 5900. https://doi.org/10.1021/ja00254a002

    CAS  Google Scholar 

  32. Pagliai, M., Cardini, G., and Schettino, V., J. Phys. Chem. (B), 2005, vol. 109, no. 15, p. 7475. https://doi.org/10.1021/jp050428q

    CAS  Google Scholar 

  33. Chowdhuri, S. and Chandra, A., J. Chem. Phys., 2006, vol. 124, no. 8, p. 084507. https://doi.org/10.1063/1.2172598

    PubMed  Google Scholar 

  34. Kameda, Y., Ebata, H., Usuki, T., and Uemura, O., Physica (B), 1995, vols. 213–214, p. 477. https://doi.org/10.1016/0921-4526(95)00185-C

    Google Scholar 

  35. Garcia-Muruais, A., Cabaleiro-Lago, E.M., Hermida-Ramón, J.M., and Rios, M.A., Chem. Phys., 2000, vol. 254, nos. 2–3, p. 109. https://doi.org/10.1016/S0301-0104(00)00008-2

    Google Scholar 

  36. Megyes, T., Radnai, T., Grósz, T., and Pálinkás, G., J. Mol. Liq. 2002, vol. 101, nos. 1–3, p. 3. https://doi.org/10.1016/S0167-7322(02)00098-3

    CAS  Google Scholar 

  37. Megyes, T., Radnai, T., and Wakisaka, A., J. Phys. Chem. (A), 2002, vol. 106, no. 35, p. 8059. https://doi.org/10.1021/jp021028v

    CAS  Google Scholar 

  38. Megyes, T., Radnai, T., and Wakisaka, A., J. Mol. Liq., 2003, vols. 103–104, p. 319. https://doi.org/10.1016/S0167-7322(02)00150-2

    Google Scholar 

  39. Kumar, P., Kulkarni, A.D., and Yashonath, S., J. Phys. Chem. (B), 2015, vol. 119, no. 34, p. 10921. https://doi.org/10.1021/acs.jpcb.5b00481

    CAS  Google Scholar 

  40. Sarkar, A., Dixit, M.K., and Tembe, B.L., Chem. Phys., 2015, vol. 447, p. 76. https://doi.org/10.1016/j.chemphys.2014.11.019

    CAS  Google Scholar 

  41. Vogrin, F.J. and Malinowski, E.R., J. Am. Chem. Soc., 1975, vol. 97, no. 17, p. 4876. https://doi.org/10.1021/ja00850a016

    CAS  Google Scholar 

  42. Chang, S., Schmidt, P.P., and Severson, M.W., J. Phys. Chem., 1986, vol. 90, no. 6, p. 1046. https://doi.org/10.1021/j100278a017

    CAS  Google Scholar 

  43. Kloss, A.A. and Fawcett, W.R., J. Chem. Soc. Faraday Trans. 1998, vol. 94, no. 24, p. 1587. https://doi.org/10.1039/A800427G

    CAS  Google Scholar 

  44. Alia, J.M. and Edwards, H.G.M., Vibr. Spectrosc., 2000, vol. 24, no. 2, p. 185. https://doi.org/10.1016/S0924-2031(00)00073-4

    CAS  Google Scholar 

  45. Kalugin, O.N., Adya, A.K., Volobuev, M.N., and Kolesnik, Y.V., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 1536. https://doi.org/10.1039/b212269c

    CAS  Google Scholar 

  46. Frolov, Y.L., Guchik, I.V., Shagun, V.A., Vaschenko, A.V., and Trofimov, B.A., J. Struct. Chem., 2003, vol. 44, no. 6, p. 927. https://doi.org/10.1023/B:JORY.0000034797.12076.f7

    CAS  Google Scholar 

  47. Onthong, U., Megyes, T., Bakó, I., Radnai, T., Grósz, T., Hermansson, K., and Probst, M., Chem. Phys. Lett., 2005, vol. 401, nos. 1–3, p. 217. https://doi.org/10.1016/j.cplett.2004.11.005

    CAS  Google Scholar 

  48. Kerisit, S., Vijayakumar, M., Han, K.S., and Mueller, K.T., J. Chem. Phys., 2015, vol. 142, no. 22, p. 224502. https://doi.org/10.1063/1.4921982

    PubMed  Google Scholar 

  49. Xuan, X., Wang, J., Zhao, Y., and Zhu, J., J. Raman Spectrosc., 2007, vol. 38, no. 7, p. 865. https://doi.org/10.1002/jrs.1732

    CAS  Google Scholar 

  50. Sládeka, V., Lukeš, V., Brezaa, M., and Ilčina, M., Comput. Theor. Chem., 2011, vol. 963, nos. 2–3, p. 503. https://doi.org/10.1016/j.comptc.2010.11.020

    Google Scholar 

  51. Cahen, Y.M., Handy, P.R., Roach, E.T., and Popov, A.I., J. Phys. Chem., 1975, vol. 79, no. 1, p. 80. https://doi.org/10.1021/j100568a018

    CAS  Google Scholar 

  52. Megyes, T., Bakó, I., Radnai, T., Grósz, T., Kosztolányi, T., Mroz, B., and Probst, M., Chem. Phys. 2006, vol. 321, nos. 1–2, p. 100. https://doi.org/10.1016/j.chemphys.2005.08.002

    CAS  Google Scholar 

  53. Hyodo, S.-A. and Okabayashi, K., Electrochim. Acta, 1989, vol. 34, no. 11, p. 1551. https://doi.org/10.1016/0013-4686(89)87040-9

    CAS  Google Scholar 

  54. Soetens, J.-C., Millot, C., and Maigret, B., J. Phys. Chem. (A), 1998, vol. 102, no. 7, p. 1055. https://doi.org/10.1021/jp972457+

    CAS  Google Scholar 

  55. Masia, M., Probst, M., and Rey, R., J. Phys. Chem. (B), 2004, vol. 108, no. 6, p. 2016. https://doi.org/10.1021/jp036673w

    CAS  Google Scholar 

  56. Bhatt, M.D., Cho, M., and Cho, K., Appl. Surf. Sci., 2010, vol. 257, no. 5, p. 1463. https://doi.org/10.1016/j.apsusc.2010.08.073

    CAS  Google Scholar 

  57. Castriota, M. and Cazzanelli, E., J. Chem. Phys., 2003, vol. 118, no. 12, p. 5537. https://doi.org/10.1063/1.1528190

    CAS  Google Scholar 

  58. Postupna, O.O., Kolesnik, Y.V., Kalugin, O.N., and Prezhdo, O.V., J. Phys. Chem. (B), 2011, vol. 115, no. 49, p. 14563. https://doi.org/10.1021/jp206006m

    CAS  Google Scholar 

  59. Borodin, O. and Smith, G.D., J. Phys. Chem. (B), 2006, vol. 110, no. 10, p. 4971. https://doi.org/10.1021/jp056249q

    CAS  Google Scholar 

  60. Borodin, O. and Smith, G.D., J. Phys. Chem. (B), 2009, vol. 113, no. 6, p. 1763. https://doi.org/10.1021/jp809614h

    CAS  Google Scholar 

  61. Ganesh, P., Jiang, D., and Kent, P.R.C., J. Phys. Chem. (B), 2011, vol. 115, no. 12, p. 3085. https://doi.org/10.1021/jp2003529

    CAS  Google Scholar 

  62. Tenney, C.M. and Cygan, R.T., J. Phys. Chem. (C), 2013, vol. 117, no. 47, p. 24673. https://doi.org/10.1021/jp4039122.

    CAS  Google Scholar 

  63. Ong, M.T., Verners, O., Draeger, E.W., van Duin, A.C.T., Lordi, V., and Pask, J.E., J. Phys. Chem. (B), 2015, vol. 119, no. 4, p. 1535. https://doi.org/10.1021/jp508184f

    CAS  Google Scholar 

  64. Skarmoutsos, I., Ponnuchamy, V., Vetere, V., and Mossa, S., J. Phys. Chem. (C), 2015, vol. 119, no. 9, p. 4502. https://doi.org/10.1021/jp511132c

    CAS  Google Scholar 

  65. Maeda, S., Kameda, Y., Amo, Y., Usuki, T., Ikeda, K., Otomo, T., Yanagisawa, M., Seki, S., Arai, N., Watanabe, H., and Umebayashi, Y., J. Phys. Chem. (B), 2017, vol. 121, no. 48, p. 10979. https://doi.org/10.1021/acs.jpcb.7b10933

    CAS  Google Scholar 

  66. Pollard, T.P. and Beck, T.L., J. Chem. Phys., 2017, vol. 147, p. 161710. https://doi.org/10.1063/1.4992788

    PubMed  Google Scholar 

  67. Chang, T.-M. and Dang, L.X., J. Chem. Phys., 2017, vol. 147, p. 161709. https://doi.org/10.1063/1.4991565

    PubMed  Google Scholar 

  68. Kondo, K., Sano, M., Hiwara, A., Omi, T., Fujita, M., Kuwae, A., Iida, M., Mogi, K., and Yokoyama, H., J. Phys. Chem. (B), 2000, vol. 104, no. 20, p. 5040. https://doi.org/10.1021/jp000142f

    CAS  Google Scholar 

  69. Tsunekawa, H., Narumi, A., Sano, M., Hiwara, A., Fujita, M., and Yokoyama, H., J. Phys. Chem. (B), 2003, vol. 107, no. 39, p. 10962. https://doi.org/10.1021/jp0300546

    CAS  Google Scholar 

  70. Barthel, J., Buchner, R., and Wismeth, E., J. Solut. Chem., 2000, vol. 29, no. 10, p. 937.

    CAS  Google Scholar 

  71. Brooksby, P.A. and Fawcett, W.R., Spectrochim. Acta (A), 2006, vol. 64, no. 2, p. 372. https://doi.org/10.1016/j.saa.2005.07.033

    Google Scholar 

  72. Kameda, Y., Umebayashi, Y., Takeuchi, M., Wahab, M.A., Fukuda, S., Ishiguro, S., Sasaki, M., Amo, Y., and Usuki, T., J. Phys. Chem. (B), 2007, vol. 111, no. 22, p. 6104. https://doi.org/10.1021/jp072597b

    CAS  Google Scholar 

  73. Smith, J.W., Lam, R.K., Sheardy, A.T., Shih, O., Rizzuto, A.M., Borodin, O., Harris, S.J., Prendergast, D., and Saykally, R.J., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 43, p. 23568. https://doi.org/10.1039/c4cp03240c

    CAS  PubMed  Google Scholar 

  74. Battisti, D., Nazri, G.A., Klassen, B., and Aroca, R., J. Phys. Chem., 1993, vol. 97, no. 22, p. 5826. https://doi.org/10.1021/j100124a007

    CAS  Google Scholar 

  75. Klassen, B., Aroca, R. and Nazri, G.A., J. Phys. Chem., 1996, vol. 100, no. 22, p. 9334. https://doi.org/10.1021/jp9537825

    CAS  Google Scholar 

  76. Takeuchi, M., Kameda, Y., Umebayashi, Y., Ogawa, S., Sonoda, T., Ishiguro, S., Fujita, M., and Sano, M., J. Mol. Liq., 2009, vol. 148, nos. 2–3, p. 99. https://doi.org/10.1016/j.molliq.2009.07.003

    CAS  Google Scholar 

  77. Kameda, Y., Saito, S., Umebayashi, Y., Fujii, K., Amo, Y., and Usuki, T., J. Mol. Liq., 2016, vol. 217, p. 17. https://doi.org/10.1016/j.molliq.2015.07.004

    CAS  Google Scholar 

  78. Pattanayak, S.K. and Chowdhuri, S., J. Theor. Comput. Chem., 2012, vol. 11, no. 2, p. 361. https://doi.org/10.1142/S0219633612500241

    CAS  Google Scholar 

  79. Deng, Z. and Irish, D.E., Can. J. Chem., 1991, vol. 69, no. 11, p. 1766. https://doi.org/10.1139/v91-259

    CAS  Google Scholar 

  80. Deng, Z. and Irish, D.E., J. Chem. Soc., Faraday Trans., 1992, vol. 88, no. 19, p. 2891. https://doi.org/10.1039/FT9928802891

    CAS  Google Scholar 

  81. Kameda, Y., Kudoh, N., Suzuki, S., Usuki, T., and Uemora, O., Bull. Chem. Soc. Jpn., 2001, vol. 74, no. 6, p. 1009. https://doi.org/10.1246/bcsj.74.1009

    CAS  Google Scholar 

  82. Sogawa, M., Sawayama, S., Han, J., Satou, C., Ohara, K., Matsugami, M., Mimura, H., Morita, M., and Fujii, K., J. Phys. Chem. (C), 2019, vol. 123, no. 14, p. 8699. https://doi.org/10.1021/acs.jpcc.9b01038

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 12, pp. 1938–1948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R. Structure of the Li+ Ion Close Environment in Various Solvents. Russ J Gen Chem 89, 2443–2452 (2019). https://doi.org/10.1134/S1070363219120193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219120193

Keywords

Navigation