Study of Selected Spectral Properties and Complex Formation with Transition Metals Ions of a New Schiff’s Base Containing Fluorescein and Sulfamide Fragments


A new azomethine based on N-aminofluorescein and ortho-tosylaminobenzaldehyde has been synthesized. Structure and properties of the obtained compound have been studied by means of IR, 1H NMR, and electron absorption spectroscopy as well as potentiometry. Using the DFT method, quantum-chemical simulation of electronic absorption spectra has been performed. The complexation of the obtained azomethine in solutions with Cu2+, Ni2+, and Co2+ cations has been studied. Metal chelates (1:2) with Cu(II), Ni(II), Zn(II), and Cd(II) have been isolated. Octahedral structure of the coordination site has been suggested for the obtained metal chelates.

This is a preview of subscription content, access via your institution.


  1. 1.

    Formica, M., Fusi, V., Giorgi, L., and Micheloni, M., Coord. Chem. Rev., 2012, vol. 256, nos. 1–2, p. 170.

    CAS  Article  Google Scholar 

  2. 2.

    Hyman, L.M., Stephenson, C.J., Dickens, M.G., Shimizu, K.D., and Franz, K.J., Dalton Trans., 2010, vol. 39, no. 2, p. 568.

    CAS  Article  Google Scholar 

  3. 3.

    Li, T., Yang, Z., Li, Y., Liu, Z., Qi, G., and Wang, B., Dyes Pigm., 2011, vol. 88, no. 1, p. 103.

    CAS  Article  Google Scholar 

  4. 4.

    Abebe, F.A. and Sinn, E., Tetrahedron Lett., 2011, vol. 52, no. 41, p. 5234.

    CAS  Article  Google Scholar 

  5. 5.

    Fang-Jun., H., Yin C-A., Yang Y-T., Su, J., Chao J-B., and Liu D-S., Anal. Chem., 2012, vol. 84, no. 5, p. 2219.

    Article  Google Scholar 

  6. 6.

    Goswami, S., Paul, S., and Manna, A., Tetrahedron Lett., 2014, vol. 55, no. 29, p. 3946.

    CAS  Article  Google Scholar 

  7. 7.

    Yin, W., Zhu, H., and Wang, R., Dyes Pigm., 2014, vol. 107, p. 127.

    CAS  Article  Google Scholar 

  8. 8.

    Abebe, F.A., Eribal, C.S., Ramakrishna, G., and Sinn, E., Tetrahedron Lett., 2011, vol. 52, no. 43, p. 5554.

    CAS  Article  Google Scholar 

  9. 9.

    An, J-m., Yan, M-h., Yang, Z-y., Li, T-r., and Zhou, Q-x., Dyes Pigm., 2013, vol. 99, no. 1, p. 1.

    CAS  Article  Google Scholar 

  10. 10.

    Popov, L.D., Tupolova, Yu.P., Askalepova, O.I., Shcherbakov, I.N., Levchenkov, S.I., Lukov, V.V., Kogan, V.A., Kaimakan, E.B., and Zubenko, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 8, p. 1689.

    CAS  Article  Google Scholar 

  11. 11.

    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785.

    CAS  Article  Google Scholar 

  12. 12.

    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.

    CAS  Article  Google Scholar 

  13. 13.

    Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, no. 2, p. 724.

    CAS  Article  Google Scholar 

  14. 14.

    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, VG., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision, A.1, Gaussian, Inc., Pittsburgh PA, USA, 2003.

    Google Scholar 

  15. 15.

    Diamond — Crystal and Molecular Structure Visualization Crystal Impact.

  16. 16.


  17. 17.

    Minkin, V.I., Tsukanov, A.V., Dubonosov, A.D., and Bren, V.A., Mol. Struct, 2011, vol. 998, no. 2, p. 179.

    CAS  Article  Google Scholar 

  18. 18.

    Nolan, E.M. and Lippard, S.J., Acc. Chem. Res., 2009, vol. 42, no. 1, p. 193.

    CAS  Article  Google Scholar 

  19. 19.

    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier Sci. Publ., B.V., 1984, p. 250.

    Google Scholar 

  20. 20.

    Chen, X. and Ma, H., Anal. Chim. Acta, 2006, vol. 575, no. 2, p. 217.

    CAS  Article  Google Scholar 

Download references


This study was performed in the scope of the internal grant of Southern Federal University (grant no. VnGr-07/2017-29) and supported by the Ministry of Science and Higher Education in the scope of the State Task to Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences (spectral studies). The study was performed using the equipment of the Center for Collective Usage “Molecular Spectroscopy” of Southern Federal University.

Author information



Corresponding author

Correspondence to L. D. Popov.

Additional information

Conflict of Interests

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 11, pp. 1747–1754.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, L.D., Borodkin, S.A., Askalepova, O.I. et al. Study of Selected Spectral Properties and Complex Formation with Transition Metals Ions of a New Schiff’s Base Containing Fluorescein and Sulfamide Fragments. Russ J Gen Chem 89, 2258–2263 (2019).

Download citation


  • azomethine
  • fluorescein
  • complexation in solutions
  • metal chelates