Abstract
A new azomethine based on N-aminofluorescein and ortho-tosylaminobenzaldehyde has been synthesized. Structure and properties of the obtained compound have been studied by means of IR, 1H NMR, and electron absorption spectroscopy as well as potentiometry. Using the DFT method, quantum-chemical simulation of electronic absorption spectra has been performed. The complexation of the obtained azomethine in solutions with Cu2+, Ni2+, and Co2+ cations has been studied. Metal chelates (1:2) with Cu(II), Ni(II), Zn(II), and Cd(II) have been isolated. Octahedral structure of the coordination site has been suggested for the obtained metal chelates.
This is a preview of subscription content, access via your institution.
References
- 1.
Formica, M., Fusi, V., Giorgi, L., and Micheloni, M., Coord. Chem. Rev., 2012, vol. 256, nos. 1–2, p. 170. https://doi.org/10.1016/j.ccr.2011.09.010
- 2.
Hyman, L.M., Stephenson, C.J., Dickens, M.G., Shimizu, K.D., and Franz, K.J., Dalton Trans., 2010, vol. 39, no. 2, p. 568. https://doi.org/10.1039/B914568K
- 3.
Li, T., Yang, Z., Li, Y., Liu, Z., Qi, G., and Wang, B., Dyes Pigm., 2011, vol. 88, no. 1, p. 103. https://doi.org/10.1016/j.dyepig.2010.05.008
- 4.
Abebe, F.A. and Sinn, E., Tetrahedron Lett., 2011, vol. 52, no. 41, p. 5234. https://doi.org/10.1016/j.tetlet.2011.07.127
- 5.
Fang-Jun., H., Yin C-A., Yang Y-T., Su, J., Chao J-B., and Liu D-S., Anal. Chem., 2012, vol. 84, no. 5, p. 2219. https://doi.org/10.1021/ac202734m
- 6.
Goswami, S., Paul, S., and Manna, A., Tetrahedron Lett., 2014, vol. 55, no. 29, p. 3946. https://doi.org/10.1016/j.tetlet.2014.05.018
- 7.
Yin, W., Zhu, H., and Wang, R., Dyes Pigm., 2014, vol. 107, p. 127. https://doi.org/10.1016/j.dyepig.2014.03.012
- 8.
Abebe, F.A., Eribal, C.S., Ramakrishna, G., and Sinn, E., Tetrahedron Lett., 2011, vol. 52, no. 43, p. 5554. https://doi.org/10.1016/j.tetlet.2011.08.072
- 9.
An, J-m., Yan, M-h., Yang, Z-y., Li, T-r., and Zhou, Q-x., Dyes Pigm., 2013, vol. 99, no. 1, p. 1. https://doi.org/10.1016/j.dyepig.2013.04.018
- 10.
Popov, L.D., Tupolova, Yu.P., Askalepova, O.I., Shcherbakov, I.N., Levchenkov, S.I., Lukov, V.V., Kogan, V.A., Kaimakan, E.B., and Zubenko, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 8, p. 1689. https://doi.org/10.1134/S1070363210080207
- 11.
Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785. https://doi.org/10.1103/PhysRevB.37.785
- 12.
Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. https://doi.org/10.1063/1.464913
- 13.
Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, no. 2, p. 724. https://doi.org/10.1063/1.1674902
- 14.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, VG., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision, A.1, Gaussian, Inc., Pittsburgh PA, USA, 2003.
- 15.
Diamond — Crystal and Molecular Structure Visualization Crystal Impact. http://www.crystalimpact.com/diamond.
- 16.
Chemissian. http://www.chemissian.com.
- 17.
Minkin, V.I., Tsukanov, A.V., Dubonosov, A.D., and Bren, V.A., Mol. Struct, 2011, vol. 998, no. 2, p. 179. https://doi.org/10.1016/j.molstruc.2011.05.029
- 18.
Nolan, E.M. and Lippard, S.J., Acc. Chem. Res., 2009, vol. 42, no. 1, p. 193. https://doi.org/10.1021/ar8001409
- 19.
Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier Sci. Publ., B.V., 1984, p. 250.
- 20.
Chen, X. and Ma, H., Anal. Chim. Acta, 2006, vol. 575, no. 2, p. 217. https://doi.org/10.1016/j.aca.2006.05.097
Funding
This study was performed in the scope of the internal grant of Southern Federal University (grant no. VnGr-07/2017-29) and supported by the Ministry of Science and Higher Education in the scope of the State Task to Federal Scientific Research Center “Crystallography and Photonics,” Russian Academy of Sciences (spectral studies). The study was performed using the equipment of the Center for Collective Usage “Molecular Spectroscopy” of Southern Federal University.
Author information
Affiliations
Corresponding author
Additional information
Conflict of Interests
No conflict of interest was declared by the authors.
Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 11, pp. 1747–1754.
Rights and permissions
About this article
Cite this article
Popov, L.D., Borodkin, S.A., Askalepova, O.I. et al. Study of Selected Spectral Properties and Complex Formation with Transition Metals Ions of a New Schiff’s Base Containing Fluorescein and Sulfamide Fragments. Russ J Gen Chem 89, 2258–2263 (2019). https://doi.org/10.1134/S1070363219110161
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- azomethine
- fluorescein
- complexation in solutions
- metal chelates