Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System

Abstract

Nanocrystalline bismuth titanates Bi2Ti4O11 (115±5 nm), Bi4Ti3O12 (60±5 nm), Bi2Ti2O7 (105±5 nm), Bi8TiO14 (82±5 nm), and Bi12TiO20 (102±5 nm) were synthesized by heat treatment of the coprecipitated composition. It was revealed that the crystallite sizes of the target materials are determined by the minimum crystallite size of the first phase to crystallize in the reaction system. The process parameters of the synthesis and of the sintering of the materials were found to depend on the melting point of the surface (nonautonomous) phase. It was shown that the formation of the materials is mainly influenced by the kinetic factor, and the influence of the structural features is less pronounced.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Speranskaya, E.I., Rez, I.S., Kozlova, L.V., Skorikov, V.M., and Slavov, V.I., Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1965, vol. 1, no. 2, p. 232.

    CAS  Google Scholar 

  2. 2.

    Lu, C.-D., Chang, L.-S., Lu, Y.-F., and Lu, F.-H., Ceram. Int., 2009, vol. 35, p. 2699. https://doi.org/10.1016/j.ceramint.2009.03.001

    CAS  Article  Google Scholar 

  3. 3.

    Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965. https://doi.org/10.1021/cm202154c

    CAS  Article  Google Scholar 

  4. 4.

    Lopez-Martinez, J., Romero-Serrano, A., Hernandez-Ramirez, A., Zeifert, B., Gomez-Yanez, C., and Martinez-Sanchez, R., Thermochim. Acta, 2011, vol. 516, p. 35. https://doi.org/10.1016/j.tca.2011.01.008

    CAS  Article  Google Scholar 

  5. 5.

    Bohm, H., J. Eur. Ceram. Soc., 2007, vol. 27, nos. 3–4, p. 887. https://doi.org/10.1016/j.jeurceramsoc.2006.04.059

    Article  Google Scholar 

  6. 6.

    Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137

    CAS  Article  Google Scholar 

  7. 7.

    Fu, B., Zhang, Y., Hong, M., Jiang, F., and Cao, J., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y

    CAS  Google Scholar 

  8. 8.

    Aurrivillius, B., Ark. Kemi, 1949, vol. 1, no. 1, p. 463.

    Google Scholar 

  9. 9.

    Joung, M.R., Jeong, B.-J., Kim, J.-S., Woo, S.-R., Park, H.-M., and Nahm, S., J. Am. Ceram. Soc., 2014, vol. 97, p. 2491. https://doi.org/10.1111/jace.12959

    CAS  Article  Google Scholar 

  10. 10.

    Radaev, S.F. and Simonov, V.I., Kristallografiya, 1992, vol. 37, p. 914.

    CAS  Google Scholar 

  11. 11.

    Sarin, V.A., Rider, E.E., Kanepit, V.N., Bydanov, N.N., Volkov, V.V., Kargin, Yu.F., and Skorikov, V.M., Kristallografiya, 1989, vol. 34, p. 628.

    CAS  Google Scholar 

  12. 12.

    Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139. https://doi.org/10.1016/S0022-4596(03)00378-5

    CAS  Article  Google Scholar 

  13. 13.

    Kahlenberg, V. and Bohm, H., J. Alloys Compd., 1995, vol. 223, p. 142. https://doi.org/10.1107/S0108768194004386

    CAS  Article  Google Scholar 

  14. 14.

    Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., and Miyayama, M., J. Appl. Phys., 2002, vol. 92, no. 3, p. 1518. https://doi.org/10.1063/1.1491594

    CAS  Article  Google Scholar 

  15. 15.

    Cagnon, J., Boesch, D.S., Finstrom, N.H., Nergiz, S.Z., Keane, S.P., and Stemmer, S., J. Appl. Phys., 2007, vol. 102, p. 044102. https://doi.org/10.1063/1.2769777

    Article  Google Scholar 

  16. 16.

    Jiang, A.Q., Hu, Z.X., and Zhang, L.D., J. Appl. Phys., 1999, vol. 85, p. 1739. https://doi.org/10.1063/L369340

    CAS  Article  Google Scholar 

  17. 17.

    Toyoda, M. and Payne, D.A., Mater. Lett., 1993, vol. 18, nos. 1–2, p. 84. https://doi.org/10.1016/0167-577X(93)90062-3

    CAS  Article  Google Scholar 

  18. 18.

    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Ugolkov, V.L., Russ. J. Gen. Chem., 2018, vol. 88, no. 12, p. 2459. https://doi.org/10.1134/S1070363218120010

    CAS  Article  Google Scholar 

  19. 19.

    Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 7, p. 1038. https://doi.org/10.1023/A:1020734312307

    CAS  Article  Google Scholar 

  20. 20.

    Fu, B.J., Zhang, Y.C., Hong, M., Jiang, F., and Cao, J.L., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y

    CAS  Google Scholar 

  21. 21.

    Zhou, J., Zou, Zh., Ray, A.K., and Zhao, X.S., Ind. Eng. Chem. Res., 2007, vol. 46, no. 3, p. 745. https://doi.org/10.1021/ie0613220

    CAS  Article  Google Scholar 

  22. 22.

    Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Inorg. Mater., 2006, vol. 42, no. 2, p. 189. https://doi.org/10.1134/S0020168506020142

    CAS  Article  Google Scholar 

  23. 23.

    Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137

    CAS  Article  Google Scholar 

  24. 24.

    Knop, O. and Brisse, F., Can. J. Chem., 1969, vol. 47, p. 971. https://doi.org/10.1139/v69-155#.W1cjMMLWi70

    CAS  Article  Google Scholar 

  25. 25.

    Kolesnik, I.V., Lebedev, V.A., and Garshev, A.V., Nanosyst.: Phys. Chem. Math., 2018, vol. 9, no. 3, p. 401. https://doi.org/10.17586/2220-8054-2018-9-3-401-409

    CAS  Google Scholar 

  26. 26.

    Hou, Y., Wang, M., Xu, X.H., Wang, D., Wang, H., and Shang, S.X., J. Am. Ceram. Soc., 2002, vol. 85, p. 3087. https://doi.org/10.1111/j.1151-2916.2002.tb00585.x

    CAS  Article  Google Scholar 

  27. 27.

    Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, p. 831. https://doi.org/10.1134/S1070427217060015

    CAS  Article  Google Scholar 

  28. 28.

    Valeeva, A.A. and Kostenko, M.G., Nanosyst.: Phys., Chem., Math., 2016, vol. 8, no. 6, p. 816. https://doi.org/10.17586/2220-8054-2017-8-6-816-822

    Google Scholar 

  29. 29.

    Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, p. 1031. https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049

    CAS  Google Scholar 

  30. 30.

    Ivicheva, S.N., Kargin, Yu F., Kutsev, S.V., and Ashmarin, A.A., Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, p. 1317. https://doi.org/10.1134/S003602361511008X

    CAS  Article  Google Scholar 

  31. 31.

    Bespalova, Zh.I. and Khramenkova, A.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 3, p. 433. https://doi.org/10.17586/2220-8054-2016-7-3-433-450

    CAS  Google Scholar 

  32. 32.

    Almjasheva, O.V. and Gusarov, V.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 385. https://doi.org/10.17586/2220-8054-2018-9-5-641-662

    Article  Google Scholar 

  33. 33.

    Kovalenko, A.N. and Tugova, E.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641. https://doi.org/10.1134/S0012501609020031

    CAS  Google Scholar 

  34. 34.

    Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 4, p. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437

    Google Scholar 

  35. 35.

    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. https://doi.org/10.1134/S1070363213120049

    CAS  Article  Google Scholar 

  36. 36.

    Lomanova, N.A. and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, p. 696.

    CAS  Google Scholar 

  37. 37.

    Gusarov, V.V. and Suvorov, S.A., Russ. J. Appl. Chem., 1990, vol. 63, no. 8, p. 1479.

    Google Scholar 

  38. 38.

    Gusarov, V.V., Thermochim. Acta, 1995, vol. 256, no. 2, p. 467. https://doi.org/10.1016/0040-6031(94)01993-Q

    CAS  Article  Google Scholar 

  39. 39.

    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. https://doi.org/1070-3632/97/6712-1846.

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 16-13-10252).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 10, pp. 1587–1594.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Tomkovich, M.V., Osipov, A.V. et al. Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System. Russ J Gen Chem 89, 2075–2081 (2019). https://doi.org/10.1134/S1070363219100141

Download citation

Keywords

  • nanocrystals
  • bismuth titanate
  • thermal behavior