Abstract
Nanocrystalline bismuth titanates Bi2Ti4O11 (115±5 nm), Bi4Ti3O12 (60±5 nm), Bi2Ti2O7 (105±5 nm), Bi8TiO14 (82±5 nm), and Bi12TiO20 (102±5 nm) were synthesized by heat treatment of the coprecipitated composition. It was revealed that the crystallite sizes of the target materials are determined by the minimum crystallite size of the first phase to crystallize in the reaction system. The process parameters of the synthesis and of the sintering of the materials were found to depend on the melting point of the surface (nonautonomous) phase. It was shown that the formation of the materials is mainly influenced by the kinetic factor, and the influence of the structural features is less pronounced.
This is a preview of subscription content, access via your institution.
References
- 1.
Speranskaya, E.I., Rez, I.S., Kozlova, L.V., Skorikov, V.M., and Slavov, V.I., Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1965, vol. 1, no. 2, p. 232.
- 2.
Lu, C.-D., Chang, L.-S., Lu, Y.-F., and Lu, F.-H., Ceram. Int., 2009, vol. 35, p. 2699. https://doi.org/10.1016/j.ceramint.2009.03.001
- 3.
Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965. https://doi.org/10.1021/cm202154c
- 4.
Lopez-Martinez, J., Romero-Serrano, A., Hernandez-Ramirez, A., Zeifert, B., Gomez-Yanez, C., and Martinez-Sanchez, R., Thermochim. Acta, 2011, vol. 516, p. 35. https://doi.org/10.1016/j.tca.2011.01.008
- 5.
Bohm, H., J. Eur. Ceram. Soc., 2007, vol. 27, nos. 3–4, p. 887. https://doi.org/10.1016/j.jeurceramsoc.2006.04.059
- 6.
Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137
- 7.
Fu, B., Zhang, Y., Hong, M., Jiang, F., and Cao, J., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y
- 8.
Aurrivillius, B., Ark. Kemi, 1949, vol. 1, no. 1, p. 463.
- 9.
Joung, M.R., Jeong, B.-J., Kim, J.-S., Woo, S.-R., Park, H.-M., and Nahm, S., J. Am. Ceram. Soc., 2014, vol. 97, p. 2491. https://doi.org/10.1111/jace.12959
- 10.
Radaev, S.F. and Simonov, V.I., Kristallografiya, 1992, vol. 37, p. 914.
- 11.
Sarin, V.A., Rider, E.E., Kanepit, V.N., Bydanov, N.N., Volkov, V.V., Kargin, Yu.F., and Skorikov, V.M., Kristallografiya, 1989, vol. 34, p. 628.
- 12.
Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139. https://doi.org/10.1016/S0022-4596(03)00378-5
- 13.
Kahlenberg, V. and Bohm, H., J. Alloys Compd., 1995, vol. 223, p. 142. https://doi.org/10.1107/S0108768194004386
- 14.
Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., and Miyayama, M., J. Appl. Phys., 2002, vol. 92, no. 3, p. 1518. https://doi.org/10.1063/1.1491594
- 15.
Cagnon, J., Boesch, D.S., Finstrom, N.H., Nergiz, S.Z., Keane, S.P., and Stemmer, S., J. Appl. Phys., 2007, vol. 102, p. 044102. https://doi.org/10.1063/1.2769777
- 16.
Jiang, A.Q., Hu, Z.X., and Zhang, L.D., J. Appl. Phys., 1999, vol. 85, p. 1739. https://doi.org/10.1063/L369340
- 17.
Toyoda, M. and Payne, D.A., Mater. Lett., 1993, vol. 18, nos. 1–2, p. 84. https://doi.org/10.1016/0167-577X(93)90062-3
- 18.
Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Ugolkov, V.L., Russ. J. Gen. Chem., 2018, vol. 88, no. 12, p. 2459. https://doi.org/10.1134/S1070363218120010
- 19.
Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 7, p. 1038. https://doi.org/10.1023/A:1020734312307
- 20.
Fu, B.J., Zhang, Y.C., Hong, M., Jiang, F., and Cao, J.L., J. Mater. Sci., 2013, vol. 24, p. 3240. https://doi.org/10.1007/s10854-013-1234-y
- 21.
Zhou, J., Zou, Zh., Ray, A.K., and Zhao, X.S., Ind. Eng. Chem. Res., 2007, vol. 46, no. 3, p. 745. https://doi.org/10.1021/ie0613220
- 22.
Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Inorg. Mater., 2006, vol. 42, no. 2, p. 189. https://doi.org/10.1134/S0020168506020142
- 23.
Zhang, Y., Zhang, Y., Fu, B., Hong, M., and Xiang, M., Ceram. Int., 2015, vol. 41, p. 10243. https://doi.org/10.1016/j.ceramint.2015.04.137
- 24.
Knop, O. and Brisse, F., Can. J. Chem., 1969, vol. 47, p. 971. https://doi.org/10.1139/v69-155#.W1cjMMLWi70
- 25.
Kolesnik, I.V., Lebedev, V.A., and Garshev, A.V., Nanosyst.: Phys. Chem. Math., 2018, vol. 9, no. 3, p. 401. https://doi.org/10.17586/2220-8054-2018-9-3-401-409
- 26.
Hou, Y., Wang, M., Xu, X.H., Wang, D., Wang, H., and Shang, S.X., J. Am. Ceram. Soc., 2002, vol. 85, p. 3087. https://doi.org/10.1111/j.1151-2916.2002.tb00585.x
- 27.
Lomanova, N.A., Tomkovich, M.V., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, p. 831. https://doi.org/10.1134/S1070427217060015
- 28.
Valeeva, A.A. and Kostenko, M.G., Nanosyst.: Phys., Chem., Math., 2016, vol. 8, no. 6, p. 816. https://doi.org/10.17586/2220-8054-2017-8-6-816-822
- 29.
Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, p. 1031. https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049
- 30.
Ivicheva, S.N., Kargin, Yu F., Kutsev, S.V., and Ashmarin, A.A., Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, p. 1317. https://doi.org/10.1134/S003602361511008X
- 31.
Bespalova, Zh.I. and Khramenkova, A.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 3, p. 433. https://doi.org/10.17586/2220-8054-2016-7-3-433-450
- 32.
Almjasheva, O.V. and Gusarov, V.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 385. https://doi.org/10.17586/2220-8054-2018-9-5-641-662
- 33.
Kovalenko, A.N. and Tugova, E.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641. https://doi.org/10.1134/S0012501609020031
- 34.
Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 4, p. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
- 35.
Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. https://doi.org/10.1134/S1070363213120049
- 36.
Lomanova, N.A. and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, p. 696.
- 37.
Gusarov, V.V. and Suvorov, S.A., Russ. J. Appl. Chem., 1990, vol. 63, no. 8, p. 1479.
- 38.
Gusarov, V.V., Thermochim. Acta, 1995, vol. 256, no. 2, p. 467. https://doi.org/10.1016/0040-6031(94)01993-Q
- 39.
Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. https://doi.org/1070-3632/97/6712-1846.
Funding
This study was financially supported by the Russian Science Foundation (project no. 16-13-10252).
Author information
Affiliations
Corresponding author
Ethics declarations
No conflict of interest was declared by the authors.
Additional information
Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 10, pp. 1587–1594.
Rights and permissions
About this article
Cite this article
Lomanova, N.A., Tomkovich, M.V., Osipov, A.V. et al. Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System. Russ J Gen Chem 89, 2075–2081 (2019). https://doi.org/10.1134/S1070363219100141
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- nanocrystals
- bismuth titanate
- thermal behavior