Skip to main content
Log in

Formation of Bi1−xCaxFeO3−δ Nanocrystals via Glycine-Nitrate Combustion

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The features of the formation of nanocrystals in the BiFeO3–CaFeO3 system via glycine-nitrate combustion were studied. The crystallite size of the bismuth orthoferrite-based solid solutions (20–45 nm), as well as their particle size, were found to depend on the calcium content. The formation processes were activated in the temperature range corresponding to the melting of the surface (nonautonomous) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbashev, A.R. and Kaul, A.R., Russ. Chem. Rev., 2011, vol. 80, no. 12, p. 1159. https://doi.org/10.1070/RC2011v080n12ABEH004239

    Article  CAS  Google Scholar 

  2. Wu, J., Fan, Zh., Xiao, D., Zhu, J., and Wang, J., Progr. Mat. Sci., 2016, vol. 84, p. 335. https://doi.org/10.1016/j.pmatsci.2016.09.001

    Article  CAS  Google Scholar 

  3. Fisher, P., Polomska, M., Sosnowska, I., and Szymanski, M., J. Phys. C, 1980, vol. 13, p. 1931. https://doi.org/10.1088/0022-3719/13/10/012

    Article  Google Scholar 

  4. Kodama, R.H., J. Magn. Magn. Mat., 1999, vol. 200, p. 359. https://doi.org/10.1016/S0304-8853(99)00347-9.

    Article  CAS  Google Scholar 

  5. Ortiz-Quinonez, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaría, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, p. 10306. https://doi.org/10.1021/ic400627c

    Article  CAS  Google Scholar 

  6. Arya, G., Kotnala, R.K., and Negi, N.S., J. Am. Ceram. Soc., 2014, vol. 97, no. 5, p. 1475. https://doi.org/10.1111/jace.12782

    Article  CAS  Google Scholar 

  7. Kozakov, A.T., Kochur, A.G., Torgashev, V.I., Googlev, K.A., Kubrin, S.P., Trotsenko, V.G., Bush, A.A., and Nikolskii, A.V., J. Alloys Compd., 2016, vol. 664, p. 392. https://doi.org/10.1016/j.jallcom.2015.12.241

    Article  CAS  Google Scholar 

  8. Gao, N., Quan, C., Maa, Y., Han, Y., Wu, Z., Mao, W., Zhang, J., Yang, J., Li, X., and Huang, W., Physica B, 2016, vol. 481, p. 45. https://doi.org/10.1016/j.physb.2015.10.019

    Article  CAS  Google Scholar 

  9. Khomchenko, V.A., Kopcewic, M., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Vieira, J.M., and Kholkin, A.L., J. Phys. D, 2008, vol. 41, no. 10, p. 102. https://doi.org/10.1088/0022-3727/41/10/102003

    Article  Google Scholar 

  10. Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., Ceram. Int., 2018, vol. 44, no. 17, p. 20906. https://doi.org/10.1016/j.ceramint.2018.08.097

    Article  CAS  Google Scholar 

  11. Xian, H., Tang, L., Mao, Z., Zhang, J., and Chen, X., Solid State Commun., 2019, vol. 287, p. 54. https://doi.org/10.1016/j.ssc.2018.09.009

    Article  CAS  Google Scholar 

  12. Mansour, S.F., Abu-Elsaad, N.I., and Elmosalam, T.A., Canad. J. Phys., 2014, vol. 92, no. 5, p. 389. https://doi.org/10.1139/cjp-2012-0282

    Article  CAS  Google Scholar 

  13. Troyanchuk, I.O., Karpinsky, D.V., Bushinskii, M.V., Prokhnenko, O., Kopcevicz, M., Szymczak, R., and Pietosa, J., J. Exp. Theor. Phys., 2008, vol. 107, no. 1, p. 83. https://doi.org/10.1134/S106377610807008X

    Article  CAS  Google Scholar 

  14. Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Li, J., Kholkin, A.L., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., and Maglione, M., J. Appl. Phys., 2008, vol. 103, no. 2, p. 024105. https://doi.org/10.1063/1.2836802

    Article  Google Scholar 

  15. Khomchenko, V.A., Kiselev, D.A., and Bdikin, I.K., Appl. Phys. Lett., 2008, vol. 93, no. 26. https://doi.org/10.1063/1.3058708

    Article  Google Scholar 

  16. Khomchenko, V.A., Kiselev, D.A., Kopcewicz, M., Maglione, M., Shvartsman, V.V., Borisov, P., Kleemann, W., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Rubinger, R.M., Sobolev, N.A., Vieira, J.M., and Kholkin, A.L., J. Magn. Magnet. Mat., 2009, vol. 321, no. 11, p. 1692. https://doi.org/10.1016/j.jmmm.2009.02.008

    Article  CAS  Google Scholar 

  17. Proskurina, O.V., Tomkovich, M.V., Bachina, A.K., Sokolov, V.V., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2507. https://doi.org/10.1134/S1070363217110019

    Article  CAS  Google Scholar 

  18. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., Danilovich, D.P., Abiev, R.Sh., and Gusarov, V.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 10, p. 2139. doi https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  19. Popkov, V.I. and Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2014, vol. 5, no. 5, p. 703.

    Google Scholar 

  20. Nguyen, A.T., Mittova, I.Ya., Solodukhin, D.O., Al’myasheva, O.V., Mittova, V.O., Demidova, S.Yu., Russ. J. Inorg. Chem., 2014, vol. 59, no. 2, p. 40. https://doi.org/10.1134/S0036023614020156

    Article  CAS  Google Scholar 

  21. Nguen, A.T., Mittova, I.Ya., and Al’myasheva, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 1, p. 1915. https://doi.org/10.1134/S1070427209110020

    CAS  Google Scholar 

  22. Popkov, V.I., Tugova, E.A., Bachina, A.K., and Almjasheva, O.V, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 1771. https://doi.org/10.1134/S1070363217110020

    Article  Google Scholar 

  23. Koferstein, R., J. Alloys Compd., 2014, vol. 590, p. 324. https://doi.org/10.1016/j.jallcom.2013.12.120

    Article  CAS  Google Scholar 

  24. Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., Ugolkov, V.L., Panchuk, V.V., Semenov, V.G., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., J. Nanopart. Res., 2018, vol. 20, no. 2, p. 17. https://doi.org/10.1007/s11051-018-4125-6

    Article  Google Scholar 

  25. Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Russ. J. Gen. Chem, 2016, vol. 86, no. 10, p. 2256. https://doi.org/10.1134/S1070363216100030

    Article  CAS  Google Scholar 

  26. Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Sokolov, V.V., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2015, vol. 6, no. 6, p. 866. https://doi.org/10.17586/2220-8054-2015-6-6-866-874

    CAS  Google Scholar 

  27. Karpov, O.N., Tomkovich, M.V., and Tugova, E.A., Russ. J. Gen. Chem., 2018, vol. 88, no. 10, p. 2128. https://doi.org/10.1134/S1070363218100171

    Article  Google Scholar 

  28. Gimaztdinova, M.M., Tugova, E.A., Tomkovich, M.V., and Popkov, V.I., Condens. Matter. Interphases, 2016, vol. 18, no. 3, p. 422. https://doi.org/10.17308/kcmf.2016.18/152

    CAS  Google Scholar 

  29. Ostroushko, A.A. and Russkikh, O.V., Nanosyst.: Phys. Chem. Math., 2017, vol. 8, no. 4, p. 476. https://doi.org/10.17586/2220-8054-2017-8-4-476-502

    CAS  Google Scholar 

  30. Aruna, S.T. and Mukasyan, A.S., Curr. Opin. Solid State Mat. Sci., 2008, vol. 12, p. 44. https://doi.org/10.1016/j.cossms.2008.12.002

    Article  CAS  Google Scholar 

  31. Lomanova, N.A. and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, p. 696.

    CAS  Google Scholar 

  32. Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. https://doi.org/10.1134/S1070363213120049

    Article  CAS  Google Scholar 

  33. Almjasheva, O.V., Smirnov, A.V., Fedorov, B.A., Tomkovich, M.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 5, p. 804. https://doi.org/10.1134/S1070363214050028

    Article  CAS  Google Scholar 

  34. Smirnov, A.V., Fedorov, B.A., Tomkovich, M.V., Almjasheva, O.V, and Gusarov, V.V., Dokl. Phys. Chem., 2014, vol. 456, no. 1, p. 71. https://doi.org/10.1134/S0012501614050042

    Article  CAS  Google Scholar 

  35. Almjasheva, O.V., Krasilin, A.A., and Gusarov, V.V., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 4, p. 568. https://doi.org/10.17586/2220-8054-2018-9-4-568-572

    CAS  Google Scholar 

  36. Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  37. Hirabayashi, D., Yoshikawa, T., Mochizuki, K., Suzuki, K., and Sakai, Y., Catal. Lett., 2006, vol. 110, p. 155. https://doi.org/10.1007/s10562-006-0104-0

    Article  CAS  Google Scholar 

  38. Gusarov, V.V., Thermochim. Acta, 1995, vol. 256, no. 2, p. 1959467. https://doi.org/10.1016/0040-6031(94)01993-Q.

    Article  Google Scholar 

  39. Kovalenko, A.N. and Tugova, E.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, p. 641. https://doi.org/10.17586/2220-8054-2018-9-5-641-662

    CAS  Google Scholar 

  40. Lomanova, N.A., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2007, vol. 33, no. 6, p. 608. https://doi.org/10.1134/S1087659607060120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 9, pp. 1448–1456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Tomkovich, M.V., Osipov, A.V. et al. Formation of Bi1−xCaxFeO3−δ Nanocrystals via Glycine-Nitrate Combustion. Russ J Gen Chem 89, 1843–1850 (2019). https://doi.org/10.1134/S1070363219090196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219090196

Keywords

Navigation