Symmetrical Fatty Dialkyl Carbonates as Potential Green Phase Change Materials: Synthesis and Characterisation

Abstract

Symmetrical fatty dialkyl carbonates make a group of chemicals that has great potential for applications as phase change materials (PCMs). In this study, various parameters affecting synthesis of these carbonates are studied on laboratory scale, which includes: reactants ratio, reaction temperature and time, and the amount of catalyst used. Structures of the desired products are identified using FTIR and NMR spectroscopy. Differential scanning calorimetry (DSC) analysis is used for determining potential of the synthesized symmetrical fatty dialkyl carbonates as PCMs for energy-saving applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Baetens, R., Jelle, B.P., and Gustavsen, A., Energ. Buildings, 2010, vol. 42, p. 1361. doi https://doi.org/10.1016/j.enbuild.2010.03.026

    Article  Google Scholar 

  2. 2.

    Dincer, I. and Rosen, M., Thermal Energy Storage (TES) Methods, in book Thermal Energy Storage: Systems and Applications, New York: John Wiley & Sons, 2010, 2 ed., p. 83. doi https://doi.org/10.1002/9780470970751.ch3

    Google Scholar 

  3. 3.

    Fleischer, A.S., Thermal Energy Storage Using Phase Change Materials, Cham: Springer, 2015. doi https://doi.org/10.1007/978-3-319-20922-7

    Google Scholar 

  4. 4.

    Kośny, J., PCM-Enhanced Building Components, Manchester: Springer, 2015. doi https://doi.org/10.1007/978-3-319-14286-9

    Google Scholar 

  5. 5.

    Cheng, W., Xie, B., Zhang, R., Xu, Z., and Xia, Y., Appl. Energ., 2015, vol. 144, p. 10. doi https://doi.org/10.1016/j.apenergy.2015.01.055

    Article  Google Scholar 

  6. 6.

    Kondo, T. and Iwamoto, S., Proc. of the X Int. Conf. Therm. Energ. Storage ECOSTOCK 2006 “Research on Thermal Storage using Rock Wool PCM Ceiling Board”, New Jersey, 2006, p. 59.

  7. 7.

    Prieto, C., Cooper, P., Fernández, A.I., and Cabeza, L.F., Renew. Sust. Energ. Rev., 2016, vol. 60, p. 909. doi https://doi.org/10.1016/j.rser.2015.12.364

    Article  CAS  Google Scholar 

  8. 8.

    Wang, Y., Wang, S., Wang, J., and Yang, R., Energ. Buildings, 2014, vol. 77, p. 11. doi https://doi.org/10.1016/j.enbuild.2014.03.036

    Article  Google Scholar 

  9. 9.

    Zhang, Y. P., Lin, K. P., Yang, R., Di, H. F., and Jiang, Y., Energ. Buildings, 2006, vol. 38, p. 1262. doi https://doi.org/10.1016/j.enbuild.2006.02.009

    Article  Google Scholar 

  10. 10.

    Zhou, D., Zhao, C.Y., and Tian, Y., Appl. Energ., 2012, vol. 92, p. 593. doi https://doi.org/10.1016/j.apenergy.2011.08.025

    Article  CAS  Google Scholar 

  11. 11.

    Yuan, Y., Zhang, N., Tao, W., Cao, X., and He, Y., Renew. Sust. Energ. Rev., 2014, vol. 29, p. 482. doi https://doi.org/10.1016/j.rser.2013.08.107

    Article  CAS  Google Scholar 

  12. 12.

    Kant, K., Shukla, A., and Sharma, A., Energy Reports, 2016, vol. 2, p. 274. doi https://doi.org/10.1016/j.egyr.2016.10.002

    Article  Google Scholar 

  13. 13.

    Rozanna, D., Chuah, T.G., Salmiah, A., Choong, T.S.Y., and Sa’ari, M., Int. J. Green Energ., 2005, vol. 1, p. 495. doi https://doi.org/10.1081/GE-200038722

    Article  CAS  Google Scholar 

  14. 14.

    Németh, B., Németh, Á.S., Ujhidy, A., Tóth, J., Trif, L., Gyenis, J., and Feczkó, T., Sol. Energ., 2018, vol. 170, p. 314. doi https://doi.org/10.1016/j.solener.2018.05.066

    Article  CAS  Google Scholar 

  15. 15.

    Kenar, J. A., Sol. Energ. Mat. Sol. C., 2010, vol. 94, p. 1697. doi https://doi.org/10.1016/j.solmat.2010.05.031

    Article  CAS  Google Scholar 

  16. 16.

    Kenar, J.A., Eur. J. Lipid Sci. Tech., 2012, vol. 114, p. 63. doi https://doi.org/10.1002/ejlt.201100043

    Article  CAS  Google Scholar 

  17. 17.

    Shaikh, A.A.G. and Sivaram, S., Ind. Eng. Chem. Res., 1992, vol. 31, p. 1167. doi https://doi.org/10.1021/ie00004a028

    Article  CAS  Google Scholar 

  18. 18.

    Kenar, J.A., Knothe, G., and Copes, A.L., J. Am. Oil Chem. Soc., 2004, vol. 81, p. 285. doi https://doi.org/10.1007/s11746-004-0897-4

    Article  CAS  Google Scholar 

  19. 19.

    Kreutzberger, C.B., Chloroformates and Carbonates, in Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley & Sons, 2001, vol. 6, p. 290. doi https://doi.org/10.1002/0471238961.0301180204011312.a01.pub2

    Google Scholar 

Download references

Funding

We are grateful to the Vietnam Academy of Science and Technology (VAST) for financial support under scientific research project: CT0000.01/18-19 and TDPCCC.05/18-20.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. N. Tung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tung, N.N., Hung, T.T., Trung, N.Q. et al. Symmetrical Fatty Dialkyl Carbonates as Potential Green Phase Change Materials: Synthesis and Characterisation. Russ J Gen Chem 89, 1513–1518 (2019). https://doi.org/10.1134/S1070363219070223

Download citation

Keywords

  • symmetrical dialkyl carbonate
  • dialkyl carbonate
  • transesterification
  • phase change material