Skip to main content
Log in

Structural Parameters and Electron Transfer in Ytterbium, Lutetium, and Cerium Compounds with Hydrocarbon Monocycles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The DFT (U)PBE0 method was used to calculate the structural parameters of the C5H5Yb·, C5H5Lu, C8H8Lu·, C8H8Yb, (C5H5)2Yb, (C5H5)3Yb, C5H5YbC8H8, C5H5Ce·C8H8, C5H5LuC8H8, (C8H8)2Lu, (C8H8)Ce*, (C8H8)2Ce, (C8H8LuC8H8)2Yb, and (C8H8Ce·C8H8)2Yb molecules. In the (C8H8)2Ce molecule, the oxidation state of the lanthanide is higher than in the quadruple-decker (C8H8LnC8H8)2Yb complexes, in the C5H5LnC8H8 molecules, and in the free radicals (C8H8)2Ce* and (C8H8)2Lu. Oxidation of (C5H5)2Yb with cyclooctatetraene and the binding of the (C8H8)2Ln molecules by ytterbium(II) are exothermic reactions. The atomic charges and the dipole and quadrupole moments are indicative of incomplete transfer of the lanthanide valence electrons to the ligands, i.e., of a significant covalent component of the η5 and η8 bonds. Lutetium interacts with cyclooctatetraene as a lanthanide, without showing the properties of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elschenbroich, Ch., Organometallchemie, Wiesbaden: B.G. Teubner Verlag, 2008.

    Google Scholar 

  2. Fischer, R.D., Angew. Chem., Int. Ed., 1994, vol. 33, no. 21, p. 2165. doi https://doi.org/10.1002/anie.199421651

    Article  Google Scholar 

  3. Dolg, M., Fulde, P., Küchle, W., Neumann, C.-S., and Stoll, H., J. Chem. Phys., 1991, vol. 94, no. 4, p. 3011. doi https://doi.org/10.1063/1.459824

    Article  CAS  Google Scholar 

  4. Dolg, M., Fulde, P., Stoll, H., Preuss, H., Chang, A., and Pitzer, R.M., Chem. Phys., 1995, vol. 195, nos. 1–3, p. 71. doi https://doi.org/10.1016/0301-0104(94)00363-F

    Article  CAS  Google Scholar 

  5. Kerridge, A., Coates, R., and Kaltsoyannis, N., J. Phys. Chem. A, 2009, vol. 113, no. 12, p. 2896. doi https://doi.org/10.1021/jp807804w

    Article  CAS  PubMed  Google Scholar 

  6. Mooßen, O. and Dolg, M., Chem. Phys. Lett, 2014, vol. 594, no. 1, p. 47. doi https://doi.org/10.1016/j.cplett.2014.01.022

    Article  CAS  Google Scholar 

  7. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. doi https://doi.org/10.1103/PhysRev-Lett.77.3865

    Article  CAS  PubMed  Google Scholar 

  8. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 115, no. 16, p. 7348. doi https://doi.org/10.1063/1.1406535

    Google Scholar 

  9. Cao, X. and Dolg, M., J. Chem. Phys, 2001, vol. 110, no. 13, p. 6158. doi https://doi.org/10.1063/1.478522

    Google Scholar 

  10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Rev. D.01, Wallingford CT: Gaussian, 2013.

  11. Tomasi, J. and Persico, M., Chem. Rev., 1994, vol. 94, no. 7, p. 2027. doi https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  12. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. doi https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  13. Cioslowski, J., J. Am. Chem. Soc., 1989, vol. 111, no. 22, p. 8333. doi https://doi.org/10.1021/ja00204a001

    Article  CAS  Google Scholar 

  14. McWeeny, R., J. Chem. Phys., 1951, vol. 19, no. 12, p. 1614. doi https://doi.org/10.1063/1.1748146

    Article  CAS  Google Scholar 

  15. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, no. 10, p. 1833. doi https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

  16. Reed, A.E., Weinstock, R.B., and Weinhold, F., J. Chem. Phys., 1985, vol. 83, no. 2, p. 735. doi https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  17. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, (Theoretical Physics), Moscow: Nauka 1973, vol. 2, p. 131.

    Google Scholar 

  18. Semenov, S.G. and Makarova, M.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 9, p. 1805. doi https://doi.org/10.1134/S107036321109012X

    Article  CAS  Google Scholar 

  19. Vilkov, L.V., Mastryukov, V.S., and Sadova, N.I., Opredelenie geometricheskogo stroeniya svobodnykh molekul, (Determination of the Geometrical Structure of Free Molecules), Moscow: Mir Publishers 1983, p. 122.

    Google Scholar 

  20. Katz, T.J., J. Am. Chem. Soc., 1960, vol. 82, no. 14, p. 3784. doi https://doi.org/10.1021/ja01499a077

    Article  CAS  Google Scholar 

  21. Bach, I., Pörschke, K.-R., Proft, B., Goddard, R., Kopiske, C., Krüger, C., Rufinska, A., and Seevogel, K., J. Am. Chem. Soc., 1997, vol. 119, no. 16, p. 3773. doi https://doi.org/10.1021/ja964210g

    Article  CAS  Google Scholar 

  22. Wessel, J., Behrens, U., Lork, E., and Mews, R., Angew. Chem., Int. Ed., 1995, vol. 34, no. 4, p. 443. doi https://doi.org/10.1002/anie.199504431

    Article  CAS  Google Scholar 

  23. O’Brien, L.C. and Bernath, P.F., J. Am. Chem. Soc., 1986, vol. 108, no. 16, p. 5017. doi https://doi.org/10.1021/ja00276a058

    Article  Google Scholar 

  24. Bopegedera, A.M.R.P., Fernando, W.T.L.M., and Bernath, P.F., J. Phys. Chem., 1990, vol. 94, no. 11, p. 4476. doi https://doi.org/10.1021/j100374a024

    Article  CAS  Google Scholar 

  25. Ortiz, J.V., J. Am. Chem. Soc., 1991, vol. 113, no. 9, p. 3593. doi https://doi.org/10.1021/ja00009a057

    Article  CAS  Google Scholar 

  26. Robles, E.S.J., Ellis, A.M., and Miller, T.A., J. Am. Chem. Soc., 1992, vol. 114, no. 18, p. 7171. doi https://doi.org/10.1021/ja00044a033

    Article  CAS  Google Scholar 

  27. Shibata, S., Bartell, L.S., and Gavin, R.M., Jr., J. Chem. Phys., 1964, vol. 41, no. 3, p. 717. doi https://doi.org/10.1063/111725950

    Article  CAS  Google Scholar 

  28. Tyler, J.K., Cox, A.P., and Sheridan, J., Nature, 1959, vol. 183, April, p. 1182. doi https://doi.org/10.1063/111725950

    Article  CAS  Google Scholar 

  29. Denning, R.G., Harmer, J., Green, J.L., and Irvin, M., J. Am. Chem. Soc., 2011, vol. 133, no. 50, p. 20644. doi https://doi.org/10.1021/ja209311g

    Article  CAS  PubMed  Google Scholar 

  30. Eggers, S.H., Kopf, J., and Fischer, R.D., Acta Cryst., Sect. C, 1987, vol. 43, no. 12, p. 2288. doi https://doi.org/10.1107/S0108270187088036

    Article  Google Scholar 

  31. Streitwieser, A., Jr., Kinsley, S.A., Rigsbee, J.T., Fragala, I.L., Ciliberto, E., and Rösch, N., J. Am. Chem. Soc., 1985, vol. 107, no. 25, p. 7786. doi https://doi.org/10.1021/ja00311a108

    Article  CAS  Google Scholar 

  32. Streitwieser, A., Kinsley, S.A., Jenson, C.H., and Rigsbee, J.T., Organometallics, 2004, vol. 23, no. 22, p. 5169. doi https://doi.org/10.1021/om049743+

    Article  CAS  Google Scholar 

  33. Cloke, F.G.N., Chem. Soc. Rev., 1993, no. 1, p. 17. doi https://doi.org/10.1039/CS9932200017

  34. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785. doi https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Becke, A.D., Phys. Rev. A, 1988, vol. 38, no. 6, p. 3098. doi https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  36. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  37. Asmis, K.R., Santambrogio, G., Brümmer, N., and Sauer, J., Angew. Chem., Int. Ed., 2005, vol. 44, no. 20, p. 3122. doi https://doi.org/10.1002/anie.200462894

    Article  CAS  Google Scholar 

  38. Asmis, K.R. and Sauer, J., Mass Spectrom. Rev., 2007, vol. 26, no. 4, p. 542. doi https://doi.org/10.1002/mas

    Article  CAS  PubMed  Google Scholar 

  39. Santambrogio, G., Brümmer, N., Wöste, L., Döbler, J., Sierka, M., Sauer, J., Meijer, G., and Asmis, K.R., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 27, p. 3992. doi https://doi.org/10.1039/b803492c

    Article  CAS  PubMed  Google Scholar 

  40. Semenov, S.G., Bedrina, M.E., Klemeshev, V.A., and Titov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 4, p. 622. doi https://doi.org/10.1134/S1070363218040023

    Article  CAS  Google Scholar 

  41. Semenov, S.G. and Bedrina, M.E., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1741. doi https://doi.org/10.1134/S1070363209080271

    Article  CAS  Google Scholar 

  42. Semenov, S.G., Bedrina, M.E., Egorov, N.V., and Titov, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 5, p. 1095. doi https://doi.org/10.1134/S1070363216050194

    Article  CAS  Google Scholar 

  43. Walter, M.D., Booth, C.H., Lukens, W.W., and Andersen, R.A., Organometallics, 2009, vol. 28, no. 3, p. 698. doi https://doi.org/10.1021/om7012327

    Article  CAS  Google Scholar 

  44. Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem, 2016, vol. 86, no. 11, p. 2515. doi https://doi.org/10.1134/S1070363216110189

    Article  CAS  Google Scholar 

  45. Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem, 2016, vol. 86, no. 6, p. 1215. doi https://doi.org/10.1134/S1070363216060013

    Article  CAS  Google Scholar 

  46. Rheingold, A.L., Foley, M.J., and Sullivan, P.J., J. Am. Chem. Soc., 1982, vol. 104, no. 17, p. 4727. doi https://doi.org/10.1021/ja00381a060

    Article  CAS  Google Scholar 

  47. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, (Theoretical Physics), Moscow: Fizmatlit 2008, vol. 3, p. 340.

    Google Scholar 

  48. IUPAC. https://iupac.org/what-we-do/periodic-table-of-elements/.

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 14-31-00022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bedrina.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 7, pp. 1069–1078.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.G., Bedrina, M.E., Buzin, A.E. et al. Structural Parameters and Electron Transfer in Ytterbium, Lutetium, and Cerium Compounds with Hydrocarbon Monocycles. Russ J Gen Chem 89, 1424–1432 (2019). https://doi.org/10.1134/S1070363219070120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219070120

Keywords

Navigation