Russian Journal of General Chemistry

, Volume 89, Issue 6, pp 1338–1346 | Cite as

Nitrous Oxide: Production, Application, and Protection of the Environment

  • K. O. DenisovaEmail author
  • A. A. IlyinEmail author
  • R. N. RumyantsevEmail author
  • A. P. IlyinEmail author
  • A. V. VolkovaEmail author


Natural and anthropogenic sources of nitrous oxide were considered, and their contribution to environmental pollution was determined. The effect of N2O on Earth’s ozone layer was described. The commercial method of production of technical and medical nitrous oxide, based on decomposition of a hot solution of ammonia nitrate, was considered. Application areas of nitrous oxide were described, and examples of its use in organic and inorganic synthesis reactions, as well as in medicine, food industry, and technology were given. Methods employed for neutralizing process gases containing nitrogen oxides, in particular absorption and adsorption methods, were reviewed. Particular attention was paid to catalytic tail gas purification in various industries; high- and low-temperature reduction of N2O by natural gas and ammonia were described; analytical review of the literature dedicated to catalytic systems and individual compounds that show activity in the decomposition and reduction of nitrous oxide was provided; and mechanisms of nitrous oxide decomposition over various catalysts were considered.


nitrous oxide environmental protection catalysts absorbents adsorbents production process gas treatment application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haber, J., Machej, T., Janas, J., and Nattich, M., Catal. Today, 2004, vol. 90, no. 1, p. 15.CrossRefGoogle Scholar
  2. 2.
    Golubyatnikov, L.L. and Mokhov, I.I., Izv. Ross. Akad. Nauk, Ser. Fiz. Atm. Okeana, 2013, vol. 49, no. 3, p. 255.Google Scholar
  3. 3.
    Zelenin, K.N., Soros. Obraz. Zh., 1997, no. 10, p. 105.Google Scholar
  4. 4.
    Schwefer, M., Groves, M., and Maurer, R., Chem. Ing. Tech., 2001, vol. 73, no. 6, p. 603.CrossRefGoogle Scholar
  5. 5.
    Blagodatskaya, E.V., Anan’eva, N.D., and Myakshina, T.N., Pochvovedenie, 1995, no. 2, p. 205.Google Scholar
  6. 6.
    Blagodatskaya, E.V., Bogomolova, I.N., and Blagodatskii, S.A., Pochvovedenie, 2001, no. 5, p. 600.Google Scholar
  7. 7.
    Novikov, Yu.V., Ekologiya, okruzhayushchaya sreda i chelovek: uchebnoe posobie dlya vuzov (Ecology, Environment, and the Man: Manual for Universities), Moscow: Fair, 1998).Google Scholar
  8. 8.
    Nikolaikin, N.I., Nikolaikina, N.E., and Melekhova, O.P., Ekologiya (Ecology), 3rd ed., Moscow: Drofa, 2004.Google Scholar
  9. 9.
    Obzor rynka azotnoi kisloty v SNG (Review of the Nitric Acid Market in the CIS), 2008, p. 121.Google Scholar
  10. 10.
    Filimonov, A.P., Khimikaty, 2005, no. 10, p. 52–53.Google Scholar
  11. 11.
    Kharitonov, A.S., Sheveleva, G.A., Panov, G.I., Sobolev, V.I., Paukshtis, Ye.A., and Romannikov, V.N., Appl. Catal., A: General, 1993, vol. 98, p. 33.CrossRefGoogle Scholar
  12. 12.
    Panov, G.I., Kharitonov, A.S., and Sheveleva, G.A., RF Patent 2058286, 1996.Google Scholar
  13. 13.
    Tedder, J.M., Nechvatal, A., and Jubb, A.H., Basic Organic Chemistry, Part 5: Industrial Products, Chichester: Wiley, 1975.Google Scholar
  14. 14.
    Lunsford, J.H. and Chang, C.D., Methane Conversion, Studies is Surface Science and Catalysis, Elsevier Science, 1990, vol. 81, no. 2, p. 359.Google Scholar
  15. 15.
    Somoriyl, G. and Varma, A., Ind. Ener. Chem. Prod. Res., 2014, no. 28, p. 79.Google Scholar
  16. 16.
    Zakirov, V.A., Khimiya Zhizn’, 2012, no. 4, p. 18.Google Scholar
  17. 17.
    Kulish, O.N. and Kuzhevatov, S.A., Zashch. Okr. Sredy Neftegaz. Kompl., 2002, no. 9, p. 12.Google Scholar
  18. 18.
    Noskov, A.S. and Pai, Z.P., Tekhnologicheskie metody zashchity atmosfery ot vrednykh vybrosov na predpriyatiyakh energetiki (Technological Methods of Protecting the Atmosphere against Harmful Emissions at Energy Industries), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 1996.Google Scholar
  19. 19.
    Orlova, M.N., Rebrov, A.I., Kulish, O.N., and Kuzhevatov, S.A., Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2012, no. 14, p. 846.Google Scholar
  20. 20.
    Rogozhnikov, D.A., Karelov, S.V., and Mamyachenkov, S.V., Sovrem. Probl. Nauki Obraz., 2011, no. 6, p. 55.Google Scholar
  21. 21.
    Strauss, W., Industrial Gas Cleaning. The Principles and Practice of the Control of Gaseous and Particulate Emissions, 2nd ed., Oxford: Pergamon, 1975.Google Scholar
  22. 22.
    Gaidei, T.P., Kokorin, A.I., Pillet, N., Strukova, M.E., and Khaustova, M.E., Zh. Fiz. Khim., 2007, vol. 81, no. 6, p. 1028.Google Scholar
  23. 23.
    Romanova, I.V. and Farbun, I.A., Rep. Natl. Acad. Sci. Ukr., 2008, no. 10, p. 154.Google Scholar
  24. 24.
    Kolesnikov, V.P. and Peshkova, L.V., Khim. Prom-st. Segodnya, 2008, no. 12, p. 53.Google Scholar
  25. 25.
    Winter, E.R.S., Discuss. Faraday Soc., 1959, vol. 28, no. 7, p. 15.Google Scholar
  26. 26.
    Abu-Zied, B.M., Schwieger, W., and Unger, A., Appl. Catal., B: Environmental, 2008, vol. 84, nos. 1–2, p. 277.CrossRefGoogle Scholar
  27. 27.
    Nováková, J. and Sobalík, Z., J. Catal., 2009, no. 127, p. 95.Google Scholar
  28. 28.
    Nirisen, O., Schöffel, K., Waller, D., and Ovrebo, D., US Patent 20100098611 A1, 2002.Google Scholar
  29. 29.
    Nirisen, O. and Schöffel, K., EP Patent 1301271 A1, 2003.Google Scholar
  30. 30.
    Shablon, E. and Popov, A.I., Physica B, 2015, vol. 477, p. 133.CrossRefGoogle Scholar
  31. 31.
    Il’in, A.A., Rumyantsev, R.N., Dubova, I.A., and Il’in, A.P., Izv. Vysch. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 10, p. 75.Google Scholar
  32. 32.
    Rumyantsev, R.N., Ilyin, A.A., Babichev, I.V., and Ilyin, A.P., Scientific Israel-Technological Advantages, 2014, vol. 16, no. 3, p. 1.Google Scholar
  33. 33.
    Il’in, A.P. and Kunin, A.V., Proizvodstvo azotnoi kisloty (Nitric Acid Production), St. Petersburg: Lan’, 2013.Google Scholar
  34. 34.
    Termokataliticheskaya ochistka i snizhenie toksichnykh vybrosov v atmosferu: Sb. nauch. tr. Inst. gaza Akad. Nauk Ukr. SSR (Thermocatalytic Purification and Reduction of Toxic Emissions into the Atmosphere: Coll. of Scientific Works of Institute of Gas, UkrSSR Academy of Sciences), Sigal, I.Ya., Ed., Kiev: Naukova Dumka, 1989.Google Scholar
  35. 35.
    Stiles, A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Stoneham (MA): Butterworth-Heinemann, 1987.Google Scholar
  36. 36.
    Kolesnikov, I.M., Kataliz i proizvodstvo katalizatorov (Catalysis and Production of Catalysts), Moscow: Tekhnika, 2004), p. 400.Google Scholar
  37. 37.
    Ismagilov, Z.R., chistka dymovykh gazov ot oksidov azota metodom selektivnogo kataliticheskogo vosstanovleniya: uchebnoe posobie dlya vuzov (Treatment of Flue Gases to remove Nitrogen Oxides by Selective Catalytic Reduction: Textbook for Universities), Minsk, 1988.Google Scholar
  38. 38.
    Karavaev, M.M., Zasorin, A.P., and Kleshchev, N.F., Kataliticheskoe okislenie ammiaka (Catalytic Oxidation of Ammonia), Moscow: Khimiya, 1983).Google Scholar
  39. 39.
    Schwefer, M., Maurer, R., and Groves, M., Reduction of Nitrous Oxide Emissions from Nitric Acid Plants, Proc. Nitrogen 2000 Int. Conf., March 12–14, 2000, Vienna (Austria), London: British Sulphur, p. 61.Google Scholar
  40. 40.
    Bogachev, A.P., Slobodchikov, A.M., and Khomyak, V.V., Elektronnoe nauchnoe izdanie “Uchenye zametki TOGU” (Electronic scientific publication “Scientists Notes of Pacific National University”), 2017, vol. 8, no. 1, p. 92.Google Scholar
  41. 41.
    Morozov, V.S., Ivchenko, B.I., and Gubanova, G.P., Zh. Fiz. Khim., 1976, vol. 50, no. 4, p. 1000.Google Scholar
  42. 42.
    Efremov, V.N., Moiseev, M.M., and Leonov, V.T., Izv. Tul’sk. Gos. Univ., Ser. Estestv. Nauki, 2014, no. 1, p. 27.Google Scholar
  43. 43.
    Vanchurin, V.I., Golovnya, E.V., and Brushtein, E.A., Katal. Prom-sti, 2006, no. 5, p. 52.Google Scholar
  44. 44.
    Bliznyuk, O.N., Kleshchev, N.F., and Ogurtsov, A.N., Integr. Tekhnol. Energosberezh., 2013, no. 3, p. 50.Google Scholar
  45. 45.
    Cremona, A., Estenfelder, M., and Vogna, E., RF Patent 2573000, 2013.Google Scholar
  46. 46.
    Vorob’ev, N.I., Tekhnologiya svyazannogo azota i azotnykh udobrenii: Uchebnoe posobie dlya vuzov (Bound Nitrogen and Nitrogen Fertilizer Technology: Textbook for Universities), Minsk: Belorus. Gos. Tekhnol. Univ., 2011.Google Scholar
  47. 47.
    Anshits, A.G., Soros. Obraz. Zh., 2000, vol. 6, no. 12, p. 35.Google Scholar
  48. 48.
    Piskorz, W., Zasada, F., and Stelmachowski, P., Catal. Today, 2008, no. 137, p. 418.Google Scholar
  49. 49.
    Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., and Sojka, Z., Catal. Lett., 2008, vol. 126, p. 72.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Research Institute of Thermodynamics and Kinetics of Chemical ProcessesIvanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations