Skip to main content
Log in

Coexisting Forms of Vanadium in Surface Water Objects (Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The results of studies of the vanadium content and its coexisting forms in surface water bodies of various regions have been summarized. It has been shown that vanadium concentration in uncontaminated water bodies and rivers does not exceed several μg/L, whereas its concentration in water bodies which are subject to anthropogenic influence or located in the regions of volcanic activity reaches tens to hundreds of μg/L. The ratio of the suspended and dissolved forms of vanadium has been considered. The dissolved form of vanadium generally predominates in water bodies, whereas its migration as a constituent of suspended substances is characteristic of rivers, especially during the spring period. The studies of dissolved vanadium compounds concerning the ratio of its oxidized and reduced forms as well as complexation with dissolved organic matter have been discussed. It has been shown that V(V) dominates in the form of the H2VO4 anion as the most stable form under oxidative conditions of surface waters. Several studies have noted the predominance of V(IV) in the form of oxocation VO2+, although it is known as unstable in the natural aquatic environment and is rapidly oxidized to V(V). This process is decelerated in the presence of humic substances which exhibit reducing properties. Anionic, cationic and neutral complexes of vanadium with organic ligands are known. Humic substances play a major part in the complexation as established for certain water bodies of Ukraine. The results of studies on the molecular weight distribution of vanadium complex compounds have been also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Templeton, D.M., Ariese, F., Cornelis, R. et al., Pure Appl. Chem., 2000, vol. 72, no. 8, pp. 1453–1470. doi https://doi.org/10.1351/pac200072081453

    Article  CAS  Google Scholar 

  2. Templeton, D.M., Fresenius’ J. Anal. Chem., 1999, vol. 363, pp. 505–511.

    Article  CAS  Google Scholar 

  3. Pyrzyńska, K., Wierzbicki, T., Talanta, 2004, vol. 64, pp. 823–829. doi https://doi.org/10.1016/j.talanta.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  4. Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Bol’shakov, K.A., Ed., Moscow: Vysshaya Shkola, 1976, ch. 3.

  5. Emsley, J., Elements of Murder, Oxford: Oxford University Press, 2005.

    Google Scholar 

  6. Linnik, P.N. and Nabivanets, B.I., Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Forms of Metal Migration in Fresh Surface Waters), Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

  7. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Manual on Chemical Analysis of Surface Land Waters), Semenov, A.D., Ed., Leningrad: Gidrometeoizdat, 1977.

  8. Shi, Y.X., Mangal, V., and Guéguen, C., Chemosphere, 2016, vol. 154, pp. 367–374. doi https://doi.org/10.1016/j.chemosphere.2016.03.124

    Article  CAS  PubMed  Google Scholar 

  9. Bandman, A.L., Volkova, N.V., and Grehhova, T.D., Vrednye khimicheskie veshchestva. Neorganicheskie soedineniya V–VIII grupp: Sprav. izdanie (Harmful Chemicals. Inorganic Compounds of the V–VIII groups: Ref. Edidion), Filov, V.A. et al., Eds., Leningrad: Khimiya, 1989.

    Google Scholar 

  10. Moskalyk, R.R. and Alfanti, A.M., Min. Eng., 2003, vol. 16, pp. 793–805.

    Article  CAS  Google Scholar 

  11. Guéguen, C., Guo, L., Wang, D., Tanaka, N., and Hung, C.C., Biogeochem., 2006, vol. 77, pp. 139–155.

    Article  CAS  Google Scholar 

  12. Schlesinger, W.H., Klein, E.M., amd Vengosh, A., PNAS Early Edition, 2017, pp. 1–9. doi https://doi.org/10.1073/pnas.1715500114

    Google Scholar 

  13. Tikhonenkova, L., Doctoral (Biol.) Dissertation, Chisinau, 2016.

    Google Scholar 

  14. Zhuravleva, N.V., Ivanykina, O.V., and Ismagilov, Z.R., Khim. Interes. Ustoich. Razvit., 2013, vol. 21, pp. 479–486.

    CAS  Google Scholar 

  15. Mukherjee, B., Patra, B., Mahapatra, S. et al., Toxicol. Lett., 2004, vol. 150, pp. 135–143. doi https://doi.org/10.1016/j.toxlet.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  16. De Cremer, K., De Kimpe, J., and Cornelis, R., Fresenius’ J. Anal. Chem., 1999, vol. 363, pp. 519–522.

    Article  Google Scholar 

  17. Stern, A., Yin, X.F., Tsang, S.S., Davison, A., and Moon, J., Biochem. Cell Biol., 1993, vol. 71, no. 3–4, pp. 103–112.

    Article  CAS  PubMed  Google Scholar 

  18. Moiseenko, T.I., Kudryavtseva, L.P., and Gashkina, N.A., Rasseyannye elementy v poverkhnostnykh vodakh sushi: Tekhnofil’nost’, bioakkumulyatsiya i ekotoksikologiya (Scattered Elements in Surface Land Waters: Technophilicity, Bioaccumulation and Ecotoxicology), Moskva: Nauka, 2006.

    Google Scholar 

  19. De Beer, H. and Coetzee, P.P., Fresenius’ J. Anal. Chem., 1994, vol. 348, pp. 806–809.

    Article  Google Scholar 

  20. Kabata-Pendias, A. and Pendias, H., Mikroelementy v pochvakh i rasteniyakh (Trace Elements in Soils and Plants), Moscow: Mir, 1989.

    Google Scholar 

  21. Grin’, S.A., Kuznetsov, P.V., and Pitak, I.V., Vostochno-Evr. Zh. Peredovykh Tehhnol., 2012, vol. 6/10 (60), pp. 9–12.

    Google Scholar 

  22. Minelli, L., Veschetti, E., Giammanco, S., Mancini, G., and Ottaviani, M., Microchem. J., 2000, vol. 67, pp. 83–90.

    Article  CAS  Google Scholar 

  23. Hu, M. and Coetzee, P.P., Water SA, 2007, vol. 33, no. 2, pp. 292–296.

    Google Scholar 

  24. Banerjee, D., Mondal, B.C., Das, D., and Das, A.K., Microchim. Acta, 2003, vol. 141, pp. 107–113.

    Article  CAS  Google Scholar 

  25. Predeina, L.M., Khoroshevskaya, V.O., and Andreev, Yu.A., Materialy konferentsii s mezhdunarodnym uchastiem (Proc. Int. Conference), September 8–10, 2015 g, Rostov-on-Don, 2015, ch. 2, pp. 372–376.

    Google Scholar 

  26. Baes, C.F. and Mesmer, R.E., Jr., The hydrolysis of Cations, New York: Wiley-Interscience, 1976, 489 p.

    Google Scholar 

  27. Antonovich, V.P., Chivireva, N.A., and Presnyak, I.S., Zh. Analit. Khim., 1997, vol. 52, no. 6, pp. 566–571.

    Google Scholar 

  28. Selbin, J., Chem. Rev., 1965, vol. 65, pp. 153–175. doi https://doi.org/10.1021/cr60234a001

    Article  CAS  Google Scholar 

  29. Wehrli, B. and Stumm, W., Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 69–77. doi https://doi.org/10.1016/0016-7037(89)90273-1

    Article  CAS  Google Scholar 

  30. Wang, D. and Wilhelmy, S.A.S., Mar. Chem., 2009, vol. 117, pp. 52–58. doi https://doi.org/10.1016/j.marchem.2009.06.001

    Article  CAS  Google Scholar 

  31. Wright, M.T., Stollenwerk, K.G., and Belitz, K., Appl. Geochem., 2014, vol. 48, pp. 41–52. doi https://doi.org/10.1016/j.apgeochem.2014.06.025

    Article  CAS  Google Scholar 

  32. Taylor, M.J.C. and van Staden, J.F., Analyst, 1994, vol. 119, pp. 1263–1276. doi https://doi.org/10.1039/AN9941901263

    Article  CAS  Google Scholar 

  33. Pettersson, L., Andersson, I.,and Gorzsas, A., Coord. Chem. Rev., 2003, vol. 237, pp. 77–87. doi https://doi.org/10.1016/S0010-8545(02)00223-0

    Article  CAS  Google Scholar 

  34. Lu, X.Q., Johnson, W.D., and Hook, J., Environ. Sci. Technol., 1998, vol. 32, pp. 2257–2263.

    Article  CAS  Google Scholar 

  35. Szalay, A. and Szilagyi M., Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 1–6.

    Article  CAS  Google Scholar 

  36. Nakano, S., Kinoshita, S., and Kawashima, T., Anal. Sci., 1990, vol. 6, pp. 435–438.

    Article  CAS  Google Scholar 

  37. Bosque-Sendra, J.M., Valencia, M.C., and Boudra, S., Fresenius’ J. Anal. Chem., 1998, vol. 360, pp. 31–37.

    Article  CAS  Google Scholar 

  38. Hirayama, K., Kageyama, S., and Unohara, N., Analyst, 1992, vol. 117, pp. 13–19.

    Article  CAS  Google Scholar 

  39. Ameko, E. and Achio, S., Okai-Armah, J., Afful, S., Eur. Sci. J., 2014, vol. 10, no. 30, pp. 353–376.

    Google Scholar 

  40. Rubio-Arias, H., Quintana, C.E., Wood, K. et al., WIT Transactions on Biomedicine and Health, 2007, vol. 11, pp. 171–179. doi https://doi.org/10.2495/EHR070181

    Article  CAS  Google Scholar 

  41. Kohušová, K., Havel, L., Vlasák, P., and Tonika, J., Environ. Monitoring and Assessment, 2011, vol. 174, nos. 1–4, pp. 555–572. doi https://doi.org/10.1007/s10661-010-1478-4

    Article  CAS  Google Scholar 

  42. Gaillardet, J., Viers, J., and Dupré, B., Treatise on Geochemistry, Volume 5, Drever, J.I., Holland, H.D., and Turekian, K.K., Eds., 2003, pp. 225–272. doi https://doi.org/10.1016/B0-08-043751-6/05165-3

  43. Shiller, A.M. and Mao, L., Continental Shelf Res., 1999, vol. 19, no. 8, pp. 1007–1020.

    Article  Google Scholar 

  44. Petrosyan, V. and Pirumyan, G., Int. Sci. Rev., 2015, no. 8(9), pp. 75–79.

    Google Scholar 

  45. Wogu, M.D. and Okaka, C.E., J. Biodiversity Environ. Sci., 2011, vol. 1, no. 3, pp. 7–12.

    Google Scholar 

  46. Linstedt, K. and Kruger, P., J. Amer. Water Works Assoc., 1969, vol. 61, pp. 85–88.

    Article  CAS  Google Scholar 

  47. Johannesson, K.H., Lyons, W.B., Graham, E.Y., and Welch, K.A., Aquatic Geochem., 2000, vol. 6, no. 1, pp. 19–46.

    Article  CAS  Google Scholar 

  48. Paudyal, R., Kang, S., Sharma, C.M., et al., J. Chem., 2016, vol. 2016, Article ID 6025905. doi https://doi.org/10.1155/2016/6025905

  49. Tanizaki, Y., Yamazaki, M., and Nagatsuka, S., Bull. Chem. Soc. Jpn., 1984, vol. 57, pp. 1545–1550.

    Article  CAS  Google Scholar 

  50. Khoroshevskaya, V.O., Vorob’eva, T.I., and Mashukov, Kh.Kh., Ekol., 2011, vol. 18, no. 4, pp. 35–36.

    Google Scholar 

  51. Volkov, I.I., Problemy litologii i geokhimii osadochnykh porod i rud (Problems of Lithology and Geochemistry of Sedimentary Rocks and Ores), Moscowa: Nauka, 1975, pp. 85–113.

    Google Scholar 

  52. Bauer, S., Doctoral Thesis on Applied Geochemistry, 2018.

    Google Scholar 

  53. Wällstedt, T., Björkvald, L., and Gustafsson, J.P., Appl. Geochem., 2010, vol. 25, pp. 1162–1175. 10.1016/j.apgeochem.2010.05.002

    Article  CAS  Google Scholar 

  54. Konovalov, G.S., Ivanova, A.A., Shul’mina, S.V., et al., Gidrokhim. Mater., 1965, vol. 50, pp. 109–113.

    Google Scholar 

  55. Supatashvili, G.D., Gidrokhimiya Gruzii (poverkhnostnye vody) [Hydrochemistry of Georgia (Surface Water)], Tbilisi: Tbilis. Univ., 2003.

    Google Scholar 

  56. Konovalov, G.S., Ivanova, A.A., and Kolesnikova, T.Kh., Gidrokhim. Mater., 1966, vol. 42, pp. 94–111.

    CAS  Google Scholar 

  57. Pokrovsky, O.S., Schott, J., Dupré, B., Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 3239–3260. doi https://doi.org/10.1016/j.gca.2006.04.008

    Article  CAS  Google Scholar 

  58. Pokrovsky, O.S., Viers, J., Shirokova, L.S. et al., Chem. Geology, 2010, vol. 273, pp. 136–149.

    Article  CAS  Google Scholar 

  59. Emerson, S.R. and Huested, S.S., Mar. Chem., 1991, vol. 34, pp. 177–196.

    Article  CAS  Google Scholar 

  60. Yiğiterhan, O., Murray, J.W., and Tuğrul, S., Mar. Chem., 2011, vol. 126, pp. 207–228. doi https://doi.org/10.1016/j.marchem.2011.05.006

    Article  CAS  Google Scholar 

  61. Konovalov, G.S. and Ivanova, A.A., Gidrokhim. Mater., 1972, vol. 53, pp. 60–70.

    CAS  Google Scholar 

  62. Khoroshevskaya, V.O., Voda: Khim. Ekol., 2015, no. 2, pp. 11–16.

    Google Scholar 

  63. Grigor’eva, M.F., Zhosse, R.Zh., Moskvin, L.N., and Kalyamin, L.V., Vestnik SPbGU, Ser. 4, 1995, vol. 3 (18), pp. 39–46.

    Google Scholar 

  64. Shiller, A.M., Duan, S., van Erp, P., and Bianchi, T.S., Limnol. Oceanogr., 2006, vol. 51, no. 4, pp. 1716–1728.

    Article  CAS  Google Scholar 

  65. Bauer, S., Blomqvist, S., and Ingri, J., Mar. Chem., 2017, vol. 196, pp. 135–147. doi https://doi.org/10.1016/j.marchem.2017.08.010

    Article  CAS  Google Scholar 

  66. Sugiyama, M., Geochem. J., 1989, vol. 23, pp. 111–116.

    Article  CAS  Google Scholar 

  67. Huang, J.-H., Huang, F., Evans, L., and Glasauer, S., Chem. Geology, 2015, vol. 417, pp. 68–89. doi https://doi.org/10.1016/j.chemgeo.2015.09.019

    Article  CAS  Google Scholar 

  68. Shiller, A.M. and Boyle, E.A., Earth Planet. Sci. Lett., 1987, vol. 86, pp. 214–224. doi https://doi.org/10.1016/0012-821X(87)90222-6

    Article  CAS  Google Scholar 

  69. Gürkan, R., Tamay, A., and Ulusoy, H.I., Arab. J. Chem., 2017, vol. 10, pp. S13–S22. doi https://doi.org/10.1016/j.arabjc.2012.06.006

  70. Fan, Z., Hu, B., and Jiang, Z., Spectrochim. Acta, Part B, 2005, vol. 6, pp. 65–71. doi https://doi.org/10.1016/j.sab.2004.10.004

    Article  CAS  Google Scholar 

  71. Strady, E., Blanc, G., Schäfer, J. et al., Estuar. Coastal Shelf Sci., 2009, vol. 83, no. 4, pp. 550–560. doi https://doi.org/10.1016/j.ecss.2009.05.006

    Article  CAS  Google Scholar 

  72. Shiller, A.M. and Mao, L., Chem. Geol., 2000, vol. 165, nos. 1–2, pp. 13–22.

    Article  CAS  Google Scholar 

  73. Wuilloud, R.G., Wuilloud, J.C., Olsina, R.A., and Martinez, L.D., Analyst, 2001, vol. 126, pp. 715–719. doi https://doi.org/10.1039/B009705P

    Article  CAS  PubMed  Google Scholar 

  74. Puntoriero, M.L., Volpedo, A.V., and Fernández Cirelli, A., Frontiers in Environmental Science, 2014, vol. 2, Article 23. doi https://doi.org/10.3389/fenvs.2014.00023

  75. Arena, G., Copat, C., and Dimartino, A., J. Water Health, 2015, vol. 13, no. 2, pp. 522–530. doi https://doi.org/10.2166/wh.2014.209

    Article  PubMed  Google Scholar 

  76. Sakai, Y., Ohshita, K., Koshimizu, S., and Tomura, K., J. Radioanal. Nuclear Chem., 1997, vol. 216, no. 2, pp. 203–212.

    Article  CAS  Google Scholar 

  77. Nakano, S., Kinoshita, S., Ikuta, M., and Kawashima, T., Anal. Sci., 1990, vol. 6, pp. 435–438.

    Article  CAS  Google Scholar 

  78. Domogalski, J. and Eugster, H.P., The Geochemical Society, Special Publication no. 2, Spencer, R.J., I-Ming Chou, Eds., 1990, pp. 315–353.

    Google Scholar 

  79. Gamage, S.V., Hodge, V.F., Cizdziel, J.V., and Lindley, K., Open Chem. Biomed. Methods J., 2010, vol. 3, pp. 10–17.

    Article  CAS  Google Scholar 

  80. Harita, Y., Hori, T., and Sugiyama, M., Limnol. Oceanogr., 2005, vol. 50, no. 2, pp. 636–645.

    Article  CAS  Google Scholar 

  81. Al Rawahi, W.A., Doctoral Thesis, Guildford, GU2 7XH 2016.

    Google Scholar 

  82. Tovar-Sanchez, A. and Sañudo-Wilhelmy, S.A., Biogeosci., 2011, vol. 8, pp. 217–225. doi https://doi.org/10.5194/bgd-7-6523-2010

    Article  CAS  Google Scholar 

  83. Telfeyan, K., Breaux, A., Kim, J. et al., Mar. Chem., 2017, vol. 192, pp. 32–48. doi https://doi.org/10.1016/j.marchem.2017.03.010

    Article  CAS  Google Scholar 

  84. Linnik, R.P., Vasil’chuk, T.A., and Zaporozhets, O.A., Khim. Tehhnol. Vody, 2003, vol. 25, no. 6, pp. 549–563.

    CAS  Google Scholar 

  85. Zaporozhets, O.A. and Dubovenko, L.I., Vest. Kiev. Univ.: Khim., 1988, no. 29, pp. 19–23.

    Google Scholar 

  86. Templeton, G.D. and Chasteen, N.D., Geochim. Cosmochim. Acta, 1980, vol. 44, no. 5, pp. 741–752.

    Article  CAS  Google Scholar 

  87. Wood, S.A., Ore Geology Rev., 1996, vol. 11, pp. 1–31.

    Article  Google Scholar 

  88. Cheshire, M.V., Berrow, M.L., Goodman, B.A., and Mundie, C.M., Geochim. Cosmochim. Acta, 1977, vol. 41, no. 8, pp. 1131–1138. doi https://doi.org/10.1016/0016-7037(77)90108-9

    Article  CAS  Google Scholar 

  89. Wilson, S.A. and Weber, J.H., Chem. Geol., 1979, vol. 26, no. 3, pp. 345–354.

    Article  CAS  Google Scholar 

  90. Abbasse, G., Ouddane, B., and Fischer, J.C., Anal. Sci., 2003, vol. 19, pp. 529–535.

    Article  CAS  PubMed  Google Scholar 

  91. Albéric, P., Viollier, E., Jézéquel, D. et al., Limnol. Oceanogr., 2000, vol. 45, no. 5, pp. 1088–1096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Linnik or R. P. Linnik.

Additional information

Original Russian Text © P.N. Linnik, R.P. Linnik, 2018, published in Ekologicheskaya Khimiya, 2018, Vol. 27, No. 6, pp. 328–339.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, P.N., Linnik, R.P. Coexisting Forms of Vanadium in Surface Water Objects (Review). Russ J Gen Chem 88, 2997–3007 (2018). https://doi.org/10.1134/S1070363218130273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218130273

Keywords

Navigation