Skip to main content
Log in

Metal-Drug Interactions: Synthesis and Spectroscopic Characteristics, Surface Morphology, and Pharmacological Activity of Ephedrine–HCl Complexes with Mo(V), Nb(V), Ga(III), and Ge(IV)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Four new Mo(V), Nb(V), Ga(III), and Ge(IV) ephedrine complexes, [Mo(Eph)2(Cl)4].Cl, [Nb(Eph)2(Cl)3], [Ga(Eph)2(Cl)3], and [Ge(Eph)2(Cl)2] are synthesized and characterized. Composition and coordination behavior of ephedrine drug towards Mo(V), Nb(V), Ga(III), and Ge(IV) ions are deduced from microanalysis, IR spectra, molar conductance, magnetic and thermal analysis data. These support coordination of the eph ligand in its neutral state. Ephedrine has two powerful chelating sites, OH and NH, that determine its uni- or bidentate mode of action. IR spectra indicate that Mo(V) and Ga(III) coordinate to ephedrine via nitrogen atom of the NH group as a unidentate chelator with six and five coordination geometry, respectively. On the other hand, Eph ligand behaves as a monoanionic bidentate no chelating agent via the NH and deprotonated OH groups in Nb(V) and Ge(IV) complexes. Mo(V) complex demonstrates electrolytic properties, the other complexes are non-electrolytes in DMSO solutions. TG/DTG analysis makes it possible to calculate the number of solvent molecules in and outside the coordination sphere, and estimate stability of the synthesized complexes. The Eph complexes are screened in vitro for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus) and antifungal (Aspergillus flavus and Candida albicans) activities. Anti-cancer action of the Mo(V) and Ga(III) complexes is assessed against the human hepato cellular carcinoma (HepG-2) tumor cell line (IC50 >1000 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaneberg, N.T., Crockett, S., Badir, E., and Khan, I.A., Phytochemistry, 2003, vol. 62, p. 911. doi 10.1016/S0031-9422(02)00716-1

    Article  CAS  PubMed  Google Scholar 

  2. Roman, M.C., J. AOAC Int., 2004, vol. 87, p. 1. PMID: 15084081.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellati, F., and Benvenuti, S., J. Chromatogr. A, 2007, vol. 1161, p. 71. doi 10.1016/j.chroma.2007.05.097

    Article  CAS  PubMed  Google Scholar 

  4. Lieberman, R.L., Bino, A., Mirsky, N., Summers, D.A., and Thompson, R.C., Inorg. Chim. Acta, 2000, vol. 297, p. 1. doi 10.1016/S0020-1693(99)00251-0

    Article  CAS  Google Scholar 

  5. Koczon, P., Piekut, J., Borawska, M., and Lewandowski, W., J. Mol. Struct., 2003, vol. 651, p. 67. doi 10.1016/S0022-2860(02)00627-0

    Google Scholar 

  6. Cui, X., Joannou, C.L., Hughes, M.N., and Cammack, R., FEMS Microbiol. Lett., 1992, vol. 98, p. 67. doi 10.1111/j.1574-6968.1992.tb05491.

    Article  CAS  Google Scholar 

  7. Hueso-Urena, F., Moreno-Ccarretero, M., Romero-Molina, M., Salas-Peregrin, J., Sanchez–Sanchez, M., Alvarez de Cienfuegos-Lopez, G., and Faure, R., J. Inorg. Biochem., 1993, vol. 51, p. 613. doi 10.1016/0162-0134 (93)85033-5

    Article  CAS  Google Scholar 

  8. Koczon, P., Piekut, J., Borawska, M., Swislocka, R., and Lewandowski, W., Spectrochim Acta Part A, 2005, vol. 61, p. 1917. doi 10.1016/j.saa.2004.07.022

    Article  CAS  Google Scholar 

  9. Koczon, P., Piekut, J., Borawska, M., Swislocka, R., and Lewandowski, W., Anal bioanal chem., 2006, vol. 384, p. 302. doi 10.1007/s00216-005-0158-7

    Article  CAS  PubMed  Google Scholar 

  10. Bauer, A.W., Kirby, W.A., Sherris, C., and Turck, M., Am. J. Clin. Pathology, 1996, vol. 45, p. 493. PMID: 5325707.

    Article  Google Scholar 

  11. Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, p. 1437. PMID: 3049651.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. National Committee for Clinical Laboratory Standards. Performance Volume. Antimicrobial Ausceptibility of Flavobacteria, 1997.

  13. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M7-A3, Villanova, Pa, 1993.

  14. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. doi 10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  15. Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A., and Elaasser, M.M., Heterocycles, 2015, vol. 91(6), p. 1227. doi 10.3987/COM-15-13210

    Article  CAS  Google Scholar 

  16. Refat, M.S., J. Mol. Struct., 2007, vol. 842, nos. 1–3, p. 24. doi 10.1016/j.molstruc.2006.12.006

    Article  CAS  Google Scholar 

  17. Allinger, N.L., J. Am. Chem. Soc., 1977, vol. 99, p. 8127. doi 10.1021/ja00467a001

    Article  CAS  Google Scholar 

  18. Hartl, F., Barbaro, P., Bell, I.M., Clark, R.J.H., Snoeck, T.L., and Vlcek, A., Inorg. Chim. Acta, 1996, vol. 252, p. 157. doi 10.1016/S0020-1693(96)05309-1

    Article  CAS  Google Scholar 

  19. Karpshin, T.B., Gehard, M.S., Solomon, E.I., and Raymond, K.N., J. Am. Chem. Soc., 1991, vol. 113(8), p. 2977. doi 10.1021/ja00008a028

    Article  Google Scholar 

  20. Michaud-Soret, I., Andersson, K.K., and Que, L., J. Biochem., 1995, vol. 34(16), p. 5504. doi 10.1021/bi00016a022

    Article  CAS  Google Scholar 

  21. Lewandowski, W., Kalinowska, M., and Lewandowska, H., J. Inorg. Biochem., 2005, vol. 99, p. 1407. doi 10.1016/j.jinorgbio.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  22. Ohrstrom, L. and Michaud-Soret, I., J. Phys. Chem., A, 1999, vol. 103, p. 256. doi 10.1021/jp981508f

    Article  Google Scholar 

  23. Noms, A.R., Kumar, R., Buncel, E., and Beauchamp, A.L., J. Inorg. Biochem., 1984, vol. 21, p. 277. doi 10.1016/0162-0134(84)85050-3

    Article  Google Scholar 

  24. Aldridge, S., Baker, R.J., Coombs, N.D., Jones, C., Rose, R.P., Rossin, A., and Willock, D.J., Dalton Trans., 2006, p. 3313. doi 10.1039/B604640A.

    Google Scholar 

  25. Martsinko, E.E., Seifullina, I.I., and Verbetskaya, T.G., Russ. J. Coord. Chem., 2005, vol. 31(8), p. 541. doi 10.1007/s11173-005-0133-z

    Article  CAS  Google Scholar 

  26. Kim, H.K., Choi, Y.H., Erkelens, C., Lefeber, A.W.M., and Verpoorte, R., Chem. Pharm. Bull., 2005, vol. 53, no. 1, p. 105. doi 10.1248/cpb.53.105

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty, S.P. and Krishnamurthy, N., J. Powder Metall. Min., 2013, vol. 2(3), p. 1. doi 10.4172/2168-9806.1000113

    Google Scholar 

  28. Kumar, T.S., Kumar, S.R., Rao, M.L., and Prakash, T.L., J. Metallurgy, 2013, vol. 2013, p. 1, Article ID 629341. doi 10.1155/2013/629341

    Google Scholar 

  29. Yarema, M., Wörle, M., Rossell, M.D., Erni, R., Caputo, R., Protesescu, L., Kravchyk, K.V., Dirin, D.N., Lienau, K., von Rohr, F., Schilling, A., Nachtegaal, M., and Kovalenko, M.V., J. Am. Chem. Soc., 2014, vol. 136, p. 12422. doi 10.1021/ja506712d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu, Z., Liu, F., Howe, J.Y., Paranthaman, M.P., and Pan, Z., Nanoscale, 2009, vol. 1, p. 347. doi:10.1039/B9NR00040B

    Article  CAS  PubMed  Google Scholar 

  31. Chiu, H.W., Chervin, C.N., and Kauzlarich, S.M., Chem. Mater., 2005, vol. 17, p. 4858. doi:10.1021/cm050674e

    Article  CAS  Google Scholar 

  32. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Klug, H.P., Ed., New York, Wiley, 1974.

  33. Dharmaraj, N., Viswanathamurthi, P., and Natarajan, K., Trans. Met. Chem., 2001, vol. 26, p. 105. doi 10.1023/A:100713240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Refat.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Habeeb, A.A., Refat, M.S. Metal-Drug Interactions: Synthesis and Spectroscopic Characteristics, Surface Morphology, and Pharmacological Activity of Ephedrine–HCl Complexes with Mo(V), Nb(V), Ga(III), and Ge(IV). Russ J Gen Chem 88, 2163–2169 (2018). https://doi.org/10.1134/S1070363218100225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218100225

Keywords

Navigation