Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2133–2138 | Cite as

Formation of Nd1–xBixFeO3 Nanocrystals under Conditions of Glycine-Nitrate Synthesis

  • O. N. Karpov
  • M. V. Tomkovich
  • E. A. Tugova
Article
  • 7 Downloads

Abstract

Nd1–xBixFeO3 nanocrystals with crystallite size 30‒60 nm have been prepared under conditions of glycine–nitrate burning. Single-phase Nd1–xBixFeO3 nanocrystals are formed over the entire studied concentrations range if the glycine–nitrate synthesis is performed in excess of the oxidizer. Under these conditions, a continuous range of the Nd1–xBixFeO3 solid solutions (0 ≤ х ≤ 0.75) crystallized in the rhombic system (space group Pbnm) are formed without crystallization of the burning intermediates. The Nd1–xBixFeO3 solid solutions (х = 0.775, 0.8) crystallize in the rhombic system (space group Pbаm).

Keywords

nanocrystals BiFeO3 NdFeO3 solid solutions phase formation nucleation solution burning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haron, W., Wisitsoraat, A., and Wongnawa, S., Ceram. Int., 2017, vol. 43, p. 5032. doi 10.1016/j.ceramint.2017.01.013CrossRefGoogle Scholar
  2. 2.
    Popkov, V.I., Almjasheva, O.V., Semenova, A.S., Kellerman, D.G., Nevedomskiy, V.N., and Gusarov, V.V., J. Mater. Sci. Mater. Electron., 2017, vol. 28, no. 10, p. 7163. doi 10.1007/s10854-017-6676-1CrossRefGoogle Scholar
  3. 3.
    Ostroushko, A. and Russkikh, O.V., Nanosystems: Phys. Chem. Math., 2017, vol. 8, no. 4, p. 476. doi 10.17586/2220-8054-2017-8-4-476-502Google Scholar
  4. 4.
    Nguen, A.T., Mittova, I.Ya., and Al’myasheva, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 11, p. 1915. doi 10.1134/S1070427209110020CrossRefGoogle Scholar
  5. 5.
    Popkov, V.I., Tugova, E.A., Bachina, A.K., and Almyasheva, O.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2516. doi 10.1134/S1070363217110020CrossRefGoogle Scholar
  6. 6.
    Goswami, S., Bhattacharya, D., and Choudhury, P., J. Appl. Phys. (D), 2011, vol. 109, no. 7, p. 737. doi 10.1063/1.3567038Google Scholar
  7. 7.
    Smirnova, E.P., Sotnikov, A., Ktitorov S, Zaitseva, N., Schmidt, H., and Weihnacht, M., Eur. Phys. J. (B), 2011, vol. 83, p. 39. doi 10.1140/epjb/e2011-20418-1CrossRefGoogle Scholar
  8. 8.
    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., Ugolkov, V.L., Panchuk, V.V., Semenov, V.G., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., J. Nanopart. Res., 2018, vol. 2, no. 2. Article ID 17. doi 10.1007/s11051018-4125-6Google Scholar
  9. 9.
    Pattanayak, S. and Choudhary, R.N.P., Ceram. Int., 2015, vol. 41, p. 9403. doi 10.1016/j.ceramint.2015.03.318CrossRefGoogle Scholar
  10. 10.
    Dzik, J., Bernard, H., Osinska, K., Lisinska-Czekaj, A., and Czekaj, D., Arch. Metallurgy Mater., 2011, vol. 56, no. 4, p. 1119. doi 10.2478/v10172-011-0125-6Google Scholar
  11. 11.
    Mathe, V.L., Patankar, K.K., Patil, R.N., and Lokande, C.D., J. Magn. Magn. Mater., 2004, vol. 270, no. 3, p. 380. doi 10.1016/j.jmmm.2003.09.004CrossRefGoogle Scholar
  12. 12.
    Ashish Gautam, K., Singh, K., Sen, R.K., and Kotnala, M., Mater. Lett., 2011, vol. 65, no. 4, p. 591. doi 10.1016/j.matlet.2010.11.002CrossRefGoogle Scholar
  13. 13.
    Pikula, T., Dzik, J., Lisinska-Czekaj, A., Czekaj, D., and Jartych, E., J. Alloys Compd., 2014, vol. 65, p. 1. doi 10.1016/j.jallcom.2014.04.011CrossRefGoogle Scholar
  14. 14.
    Navarro, M.C., Jorge, G., Negri, R.M., Saleh Medina, L.M., and Gómez, M.I., J. Therm. Anal. Calorim., 2015, vol. 122, no. 1, p. 73. doi 10.1007/s10973-015-4669-yCrossRefGoogle Scholar
  15. 15.
    Chen, C., Tang, Z., Wang, G., Lu, C., and Xu, Z., J. Ceram. Processing Res., 2012, vol. 13, no. 2, p.184.Google Scholar
  16. 16.
    Klyndyuk, A.I., Tugova, E.A., Karpov, O.N., Chizhova, E.A., Tomkovich, M.V., and Kononovich, V.M., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2282. doi 10.1134/S1070363216100066CrossRefGoogle Scholar
  17. 17.
    Yuan, G.L. and Or, S.W., Appl. Phys. Lett., 2006, vol. 88, no. 6, p. 062905. doi 10.1063/1.2169905CrossRefGoogle Scholar
  18. 18.
    Kumar, A. and Varshney, D., Ceram. Int., 2012, vol. 38, p. 3935. doi 10.1016/j.ceramint.2012.01.046CrossRefGoogle Scholar
  19. 19.
    Liu, S., Luo, H., Yan, S., Yao, L., He, J., Li, Y., He, L., Huang, S., and Deng, L., J. Magn. Magn. Mater., 2017, vol. 426, p. 267. doi 10.1016/j.jmmm.2016.11.080CrossRefGoogle Scholar
  20. 20.
    Levin, I., Karimi, S., Provenzano, V., Dennis, C.L., Wu, H., Comyn, T.P., Stevenson, T.J. Smith, R.I., and Reaney, I.M., Phys. Rev. (B), 2010, vol. 81, no. 2, p. 020103. doi 10.1103/PhysRevB.81.020103CrossRefGoogle Scholar
  21. 21.
    Levin, I., Tucker, M.G., Wu, H., Provenzano, V., Dennis, C.L., Karimi, S., Comyn, T., Stevenson, T., Smith, R.I., and Reaney, I.M., Chem. Mater., 2012, vol. 23, no. 8, p. 2166. doi 10.1021/cm1036925CrossRefGoogle Scholar
  22. 22.
    Egorysheva, A.V., Kuvshinova, T.B., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Inorg. Mater., 2013, vol. 49, no. 3, p. 310. doi 10.1134/S0020168513030035CrossRefGoogle Scholar
  23. 23.
    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, no. 73, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70CrossRefGoogle Scholar
  24. 24.
    Selbach, S.M., Einarsrud, M.-A., and Grande, T., Chem. Mater., 2009, vol. 21, p. 169. doi 10.1021/cm802607pCrossRefGoogle Scholar
  25. 25.
    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2256. doi 10.1134/S1070363216100030CrossRefGoogle Scholar
  26. 26.
    Tugova, E., Yastrebov, S., Karpov, O., and Smith, R., J. Cryst. Growth., 2017, vol. 467, p. 88. doi 10.1016/j.jcrysgro.2017.03.022CrossRefGoogle Scholar
  27. 27.
    Mathe, V.L., Patankar, K.K., Patil, R.N., and Lokhande, C.D., J. Magn. Magn. Mater., 2004, vol. 270, p. 380. doi 10.1016/j.jmmm.2003.09.004CrossRefGoogle Scholar
  28. 28.
    Mukasyan, A.S. and Rogachev, A.S., J. Mater. Sci., 2017, vol. 52, p. 11826. doi 10.1007/s10853-017-1075-9CrossRefGoogle Scholar
  29. 29.
    Popkov, V.I., Almjasheva, O.V., Nevedomskyi, V.N., Sokolov, V.V., and Gusarov, V.V., Nanosystems: Phys. Chem. Math., 2015, vol. 6 N 6, p. 866. doi 10.17586/2220-8054-2015-6-6-866-874Google Scholar
  30. 30.
    Komlev, A.A. and Gusarov, V.V., Inorg. Mater., 2014, vol. 50, no. 12, p. 1247. doi 10.7868/S0002337X14120100CrossRefGoogle Scholar
  31. 31.
    Gimaztdinova, M.M., Tugova, E.A., Tomkovich, M.V., and Popkov, V.I., Kondens. Sredy Mezhfaz. Granitsy, 2016, vol. 18, no. 3, p. 422. doi 10.17308/kcmf.2016.18/152Google Scholar
  32. 32.
    Almjasheva, O.V. and Gusarov, V.V., Russ. J. Appl. Chem., 2016, vol. 89, no. 6, p. 851. doi 10.1134/S107042721606001XCrossRefGoogle Scholar
  33. 33.
    Tomkovich, M. V., Andrievskaya, E.P., and Gusarov, V.V., Nanosistemy: Fiz., Khim., Mat., 2011, no. 2, p.6.Google Scholar
  34. 34.
    Al’myasheva, O.V. and Gusarov, V.V., Doklady Phys. Chem., 2009, vol. 424, no. 2, p. 43. doi 10.1134/S0012501609020031CrossRefGoogle Scholar
  35. 35.
    Tugova, E.A. and Gusarov, V.V., Nanosystems: Phys. Chem. Math., 2013, vol. 4, no. 3, p. 352.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. N. Karpov
    • 1
    • 2
  • M. V. Tomkovich
    • 1
  • E. A. Tugova
    • 1
    • 2
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Electrotechnical University “LETI,”St. PetersburgRussia

Personalised recommendations