Skip to main content
Log in

Effect of the Composition of the Medium on the Selectivity of Deactivation of Skeletal Nickel Catalyst

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of the composition of the catalytic system (the nature and composition of the solvent, specifically, aqueous solutions of sodium hydroxide and their mixtures with aliphatic alcohols with the alcohol concentration of 0.11 mole fractions) and additions of a catalyst poison (sodium sulfide) on the catalytic activity of skeletal nickel in the liquid-phase hydrogenation of the carbon‒carbon double bond in sodium maleate was studied. The assumption was made on the decisive role of the solvent in changing the activity of skeletal nickel in the hydrogenation reaction of sodium maleate, which is primarily associated with the redistribution of individual forms of adsorbed hydrogen. In was found that in the water‒sodium hydroxide‒monohydric alcohol solvent skeletal nickel undergoes selective deactivation at the NaOH concentration of 0.01 M, antiselective deactivation at the NaOH concentration of 0.10 M, and variable deactivation at the NaOH concentration of 1.0 M. It is shown that in some cases sodium sulfide additions exert a promoting effect on skeletal nickel in the hydrogenation of sodium maleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulitin, M.V., Barbov, A.V., and Lukin, M.V., Problemy termodinamiki poverkhnostnykh yavlenii i adsorbtsii (Problems of the Thermodynamics of Surface Phenomena and Adsorption), Ivanovo: Ivanov. Gos. Khim.-Tekhnol. Univ., 2005, p. 147.

    Google Scholar 

  2. Mehta, A., Thaker, A., Londhe, V., and Nandan, S.R., Appl. Catal. A: General, 2014, vol. 478, p. 241. doi 10.1016/j.apcata.2014.04.009

    Article  CAS  Google Scholar 

  3. Ryazanov, M.A., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 4, p. 664. doi 10.1134/S003602441204019X

    Article  CAS  Google Scholar 

  4. Afineevskii, A.V., Prozorov, D.A., Lukin, M.V., and Ulitin, M.V., Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol., 2010, vol. 53, no. 9, p. 18.

    Google Scholar 

  5. Lukin, M.V. and Afineevskii, A.V., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 7, p. 1173. doi 10.1134/S0036024415070237

    Article  CAS  Google Scholar 

  6. Sokol’skii, D.V., Gidrirovanie v rastvorakh (Hydrogenation in Solutions), Alma-Ata: Nauka, 1979.

    Google Scholar 

  7. Bartholomew, C.H., Appl. Catal. A: General, 2001, vol. 212, no. 1, p. 17. doi 10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  8. Kustov, L.M., Russ. J. Gen. Chem., 2010, vol. 80, no. 12, p. 2527. doi 10.1134/S1070363210120236

    Article  CAS  Google Scholar 

  9. Hughes, R., Deactivation of Catalysts, London: Academic, 1984.

    Google Scholar 

  10. Ostrovskii, N.M., Kinetika dezaktivatsii katalizatorov: matematicheskie modeli i ikh primenenie (Kinetics of Catalyst Deactivation: Mathematic Models and Their Application), Moscow: Nauka, 2001, p. 335.

    Google Scholar 

  11. Dunleavy, J.K., Platinum Metals Rev., 2006, vol. 50, no. 2, p. 110. doi 10.1595/147106706x111456

    Article  CAS  Google Scholar 

  12. Irandoust, S. and Edvardsson, J., J. Am. Oil Chem. Soc., 1993, vol. 70, no. 11, p. 1149.

    Article  CAS  Google Scholar 

  13. Lukin, M.V., Prozorov, D.A., Ulitin, M.V., and Vdovin, Yu.A., Kinet. Catal., 2013, vol. 54, no. 4, p. 412. doi 10.1134/S0023158413040101

    Article  CAS  Google Scholar 

  14. Anderson, J.R., Structure of Metallic Catalysts, London: Academic, 1975.

    Google Scholar 

  15. Ulitin, M.V., Barbov, A.V., Shalyukhin, V.G., and Gostikin, V.P., Zh. Prikl. Khim., 1993, vol. 66, no. 3, p. 497.

    CAS  Google Scholar 

  16. Krasnov, K.S., Vorob’ev, N.K., and Godnev, I.N., Fizicheskaya khimiya (Physical Chemistry), Moscow: Vysshaya Shkola, 2001, book 2.

    Google Scholar 

  17. Zavorin, V.A., Yakovleva, T.I., Toibaev, T.I., Fasman, A.B., and Sokol’skii, D.V., Zh. Fiz. Khim., 1974, vol. 48, no. 1, p. 168.

    CAS  Google Scholar 

  18. Vinogradov, S.V. and Ulitin, M.V., Russ. J. Phys. Chem., 1997, vol. 71, no. 4, p. 569.

    Google Scholar 

  19. Tomina, N.N., Pimerzin, A.A., and Moiseev, I.K., Russ. J. Gen. Chem., 2009, vol. 79, no. 6, p. 1274. doi 10.1134/S1070363209060449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Afineevskii.

Additional information

Original Russian Text © A.F. Afineevskii, M.V. Lukin, D.A. Prozorov, 2016, published in Rossiiskii Khimicheskii Zhurnal, 2016, Vol. 60, No. 2, pp. 33–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afineevskii, A.F., Lukin, M.V. & Prozorov, D.A. Effect of the Composition of the Medium on the Selectivity of Deactivation of Skeletal Nickel Catalyst. Russ J Gen Chem 88, 1976–1980 (2018). https://doi.org/10.1134/S1070363218090396

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218090396

Keywords

Navigation