Skip to main content
Log in

Synthesis and In Vitro Antibacterial Evaluation of Some Novel Annulated Quinazolinone Derivatives

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of novel substituted quinazoline derivatives are synthesized. Antibacterial tests demonstrate their high activity against Gram-positive and Gram-negative bacteria. 3-[4-(2-Bromoacetyl)-phenyl]-2-phenylquinazolin-4(3H)-one 2 and 3-oxo-3-{[4-(4-oxo-2-phenylquinazolin-3(4H)-yl]phenyl}propanenitrile 3 are used as intermediates in the synthesis of functionalized heterocyclic derivatives such as 3-[4-(2-amino-thiazol-5-yl)phenyl]-2-phenylquinazolin-4(3H)-one 4, Schiff base 5, 3-{5-(4-[4-oxo-2-phenylquinazolin-3(4H)-yl]phenyl)thiazol-2-yl}-2-phenylthiazolidin-4-one 6, and N-phenyl acetohydrazonoyl derivatives 7a, 7b. The latter react with ethyl cyanoacetate with formation of 9a, 9b. Chalcone 10 is the key intermediate in the synthesis of N-acetylpyrazole derivative 11 and 1-thiocaramoyl pyrazole derivative 12. Treatment of 12 with chloroacetyl chloride and compound 2 leads to formation of compounds 13 and 14, respectively. Treatment of compound 3 with phenyl isothiocyanate affords the corresponding quinazolin-3(4H)-yl acrylonitrile derivative 15, which reacts with phenyl hydrazine to give the corresponding product 16. The synthesized compounds are characterized by IR, MS and 1H NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli, J., Turmo, E., and Alguero, M., J. Med. Chem., 1998, vol. 41 (11), p. 1869. doi 10.1021/jm9707277

    Google Scholar 

  2. Kurogi, Y., Inoue, Y., Tsutsumi, K., Yoshitsugu, H., and Tuda, Y., J. Med. Chem., 1996, vol. 39, p. 143. doi 10.1021/jm9506938

    Article  Google Scholar 

  3. Sayyed, M.S., Mokle, S.S., and Vibhute, Y.B., Arkivoc, 2006, vol. 11, p. 221.

    Google Scholar 

  4. Mosaad, S.M., Mohammed, K.I., Ahmed, M.A., and Abdel-Hamide, S.G., J. Biol. Sci., 2004, vol. 4(4), p. 504.

    Google Scholar 

  5. Griffin, R.J., Srinivasan, S., Bowman, K., Calvert, A.H., Curtin, N.J., Newell, D.R., Pemberton, L.C., and Golding, B.T., and J. Med. Chem., 1998, vol. 41(26), p. 5247. doi 10.1021/jm980273t

    Google Scholar 

  6. Bhattacharjee, A.K., Hartell, M.G., Nichols, D.A., Hicks, R.P., Stanton, B., Hamont, J.E., and Milhous, W.K. Eur. J. Med. Chem., 2004, vol. 39(1), p. 59. doi 10.1016/j.ejmech.2003.10.004

    Google Scholar 

  7. Salih, N.A., J. Al-Nahrain University, 2008, vol. 11, p. 8. doi 10.1016/j.jtusci.2013.09.003

    Article  Google Scholar 

  8. Oh, S. and Park, S.B. Chem. Comm., 2011, vol. 47, p. 12754. doi 10.1039/C1CC14042F

    Article  CAS  PubMed  Google Scholar 

  9. Tiwaryl, B.K., Pradhan, K., Nanda, A.K., and Chakraborty, R., J. Chem. Bio. Ther., 2015, vol. 1(1), p. 1. doi 10.4172/2572-0406.1000104

    Google Scholar 

  10. El-Shenawy, A.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 9, p. 2067. doi 10.1134/S1070363217090237

    Article  CAS  Google Scholar 

  11. El-Shenawy, A.I. and Aly, A.A., Egypt. J. Chem., 2005, vol. 38(6), p. 781.

    Google Scholar 

  12. Aly, A.A., J. Chinese Chem. Soc., 2007, vol. 54, p. 437. doi 10.1002/jccs.200700061

    Article  CAS  Google Scholar 

  13. Aly, A.A., Chinese J. Chem., 2003, vol. 21 (3), p. 339. doi 10.1002/cjoc.20030210324

    Google Scholar 

  14. Aly, A.A., Phosphorus. Sulfur, and Silicon, 2003, vol. 178(11), p. 2415. doi 10.1080/714040955

    Google Scholar 

  15. Nassar S.N. and Aly, A.A., Egyptian j Chem., 2002, vol. 45(1), p. 205.

    Google Scholar 

  16. Mahmoud, M.R., and Abdelwahab, S.S., Saied, K.F., Egypt. J. Chem., 2017, vol. 60(6), p. 1059. doi 10.21608/EJCHEM.2017.1819.1152

    Google Scholar 

  17. Chande, M.S. and Ambhaikar, S.B., Indian J. Chem., 1996, vol. 35B, p. 373.

    Google Scholar 

  18. Havera, H.J., J. Med. Chem., 1979, vol. 22(12), p. 1548. doi 10.1021/jm00198a024

    Google Scholar 

  19. Zhang, Y., Xu, C., Houghten, R.A., and Yu, Y., J. Comb. Chem., 2007, vol. 9(1), p. 9. doi 10.1021/cc0601231

    Google Scholar 

  20. Kumara, D., Mariappana, G., Husainb, A., Mongac, J., and Kumard, S., Arabian J. Chem., 2017, vol. 10(3), p. 344. doi 10.1016/j.arabjc.2014.07.001

    Google Scholar 

  21. Waynae, P.A., National Committee for Clinical Laboratory Standards Approved Standards M2–A6. Performance Standards for Antimicrobial Disc Susceptibility Testing, Perseus, Cambridge, 1997, 6 ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. El-Shenawy.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shenawy, A.I. Synthesis and In Vitro Antibacterial Evaluation of Some Novel Annulated Quinazolinone Derivatives. Russ J Gen Chem 88, 1712–1719 (2018). https://doi.org/10.1134/S107036321808025X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321808025X

Keywords

Navigation