Skip to main content
Log in

Synthesis and Structure of Tetraphenylphosphonium Carboxylates

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Hydrates of tetraphenylphosphonium carboxylates were synthesized by the reaction of equimolar amounts of pentaphenylphosphorus with 2-methoxybenzoic, 2-nitrobenzoic, and maleic acids in benzene. The product of the pentaphenylphosphorus reaction with tetrafluorophthalic acid (mole ratio 2: 1) is bis- (tetraphenylphosphonium) tetrafluorophthalate hydrate. According to the X-ray analysis data, crystals of tetraphenylphosphonim carboxylates are formed by tetraphenylphosphonim tetrahedral cations and single- or double-charged carboxylate anions. Structural organization of the crystals is determined by C–H···O weak hydrogen bonds formed with the participation of carboxylate groups and water molecules or manifold C–H···F interactions between cations and anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheatley, P.J., J. Chem. Soc., 1964, p. 2206. doi 10.1039/JR9640002206

    Google Scholar 

  2. Che, W.-C., Shi, W.-C., Jurc, T., Zhao, L., Andrada, D.M., Peng, C.-J., Chang, C.-C., Liu, S.-K., Wang, Y.-P., Wen, Y.-S., Yap, G.P.A., Hsu, C.-P., Frenking, G., and Ong, T.-Gan, J. Am. Chem. Soc., 2017, vol. 139, no. 36, p. 12830. doi 10.1021/jacs.7b08031

    Article  CAS  Google Scholar 

  3. Allen, D.W., March, L.A., Nowell, I.W., and Tebby, J.C., Z. Naturforsch. (B), 1983, vol. 38, p. 465. doi 0340-5087/83/0400-0465/$01.00/0

    Article  Google Scholar 

  4. Barnes, N.A., Godfrey, S.M., Halton, R.T.A., Law, S., and Pritchard, R.G., Angew. Chem. Int. Ed., 2006, vol. 45, p. 1272. doi 10.1002/anie.200503335

    Article  CAS  Google Scholar 

  5. Monkowiu, U., Mitze, N.W., Schie, A., and Schmidbaur, H., J. Am. Chem. Soc., 2002, vol. 124, p. 6126. doi 10.1021/ja012041g

    Article  CAS  Google Scholar 

  6. Ruiz, J., Marquínez, F., Riera, V., Vivanco, М., García-Granda, S., and Díaz, M.R., Chem.-Eur. J., 2002, vol. 8, p. 3872. doi 10.1002/1521-3765(20020902)8:17

    Article  CAS  PubMed  Google Scholar 

  7. Muller, G. and Bildmann, U.J., Z. Naturforsch. (B), 2004, vol. 59, nos. 11–12, p. 1411. doi 10.1515/znb-2004-11-1207

    Article  Google Scholar 

  8. Day, R.O., Husebye, S., and Holmes, R.R., Inorg. Chem., 1980, vol. 19, p. 3616. doi 10.1021/ic50214a011

    Article  CAS  Google Scholar 

  9. Bestmann, H.J., Dr. Oechsner, H.P., Kisielowski, L., and Egerer-Sieber, C., Angew. Chem. Int. Ed., 1995, vol. 34, p. 2017. doi 10.1002/anie.199520171

    Article  CAS  Google Scholar 

  10. Sharutin, V.V., Bychkov, V.T., and Lebedev, V.A., Zh. Obshch. Khim., 1986, vol. 56, no. 2, p. 325.

    CAS  Google Scholar 

  11. Razuvaev, G.A., Osanova, N.A., Brilkina, T.G., Zinovjeva, T.I., and Sharutin, V.V., J. Organometal. Chem., 1975, vol. 99, p. 93. doi 10.1016/S0022-328X (00)8636

    Article  CAS  Google Scholar 

  12. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., and Boyarkina, E.A., Russ. J. Gen. Chem., 2009, vol. 79, no. 1, p. 78. doi 10.1134/S1070363209010125

    Article  CAS  Google Scholar 

  13. Schmidbau, H. and Mitschke, K.H., Angew. Chem., 1971, vol. 83, p. 149. doi 10.1002/ange.19710830414

    Article  Google Scholar 

  14. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., and Panova, L.P., Russ. J. Inorg. Chem., 2008, vol. 7, p. 1110. doi 10.1134/S0036023608070206

    Article  Google Scholar 

  15. Milewski-Mahrla, B. and Schmidbaur, H., Z. Naturforsch. (B), 1982, vol. 37, no. 11, p. 1393. doi 10.1515/znb-1982-110.

    Article  Google Scholar 

  16. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., and Belsky, V.K., J. Organometal. Chem., 1997, vol. 536, no. 1, p. 87. doi 10.1016/S0022-328X(96)06463-7

    Article  Google Scholar 

  17. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

    Google Scholar 

  18. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin,USA.

    Google Scholar 

  19. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 39. doi 10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Additional information

Original Russian Text © V.V. Sharutin, O.K. Sharutina, A.V. Rybakova, Yu.O. Gubanova, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 8, pp. 1308–1313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K., Rybakova, A.V. et al. Synthesis and Structure of Tetraphenylphosphonium Carboxylates. Russ J Gen Chem 88, 1629–1634 (2018). https://doi.org/10.1134/S1070363218080133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218080133

Keywords

Navigation